
I. INTRODUCTION

The process of emulsification usually takes place under es-
sentially dynamic conditions. It is accompanied with the
creation of new drops (new phase boundary) between the
two liquids and with frequent collisions between the drops.
Their instantaneous size distribution is the result of a com-
petition between two oppositely directed processes: (1)
breaking of the drops into smaller ones by the shear strain;
and (2) coalescence of the newly formed drops into larger
ones upon collision. If surfactant is present, it tends to ad-
sorb at the surface of the drops and thus to protect them
against coalescence. The rate of surfactant adsorption
should be large enough to guarantee obtaining a sufficiently
high coverage of the oil-water interface during the short pe-
riod between two drop collisions. Therefore, an important
parameter characterizing a given surfactant as emulsifier is
its characteristic adsorption time T1; the latter can vary by
many orders of magnitude depending on the type of surfac-
tant, its concentration, and the presence or absence of added
nonamphiphilic electrolyte (salt) in the aqueous phase. In
Sec. II.B we demonstrate how to quantify T1 for both ionic
and nonionic surfactants.

The adsorbed surfactant molecules counteract the drop
coalescence in two ways (1, 2). The presence of surfactant
gives rise to repulsive surface forces (of either electrostatic,
steric, or oscillatory structural origin) between the drops,
thus providing a thermodynamic stabilization of the emul-
sion; see also Refs 3 and 4. Moreover, the adsorbed surfac-

tant reduces (or completely removes) the tangential mobil-
ity of the drop surfaces and in this way markedly deceler-
ates the interdroplet collisions; this is known as kinetic
stabilization (1). The latter is related to the Marangoni ef-
fect, i.e., to the appearance of gradients of adsorption and
interfacial tension along the surfaces of two colliding
droplets (see Fig. 1):
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where Vs is the surface gradient operator, Γ is the surface
tension, T1 is the surfactant adsorption, and EG the Gibbs
(surface) elasticity; expressions for estimating EG can be
found in Sec. II.A.

In the case of low interfacial coverage with surfactant,
the collision of two emulsion drops (step A→B in Fig. 2)
usually terminates with their coalescence (step B→C in
Fig. 2). The merging of the two drops occurs when a small
critical distance between their surfaces, hc is reached.
Sometimes, depending on the specifie conditions (larger
drop size, attractive surface forces, smaller surface tension,
etc., —- see, e.g., Ref. 2), the approach of the two drops
could be accompanied with a deformation in the zone of
their contact (step B→D in Fig. 2); in this way a liquid film
of almost uniform thickness h is formed in the contact zone.
This film could also have a critical thickness hc of rupture;
in fact, the film rupture is equivalent to drop coalescence
(see step D→C in Fig. 2). The mechanisms of coalescence
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and the theoretical evaluation of hc are considered in Sec.
III.

The driving force of the drop—-drop collisions (F in Fig.
2) can be the Brownian stochastic force, the buoyancy
force, or some attractive surface force (say, the van der
Waals interaction); in stirred vessels an important role is
played by the hydrodynamic (including turbulent) forces.
The mutual approach of two emulsion drops (step A→B in
Fig. 2) is decelerated by the viscous friction due to the ex-
pulsion of the liquid from the gap between the drops. If a
doublet of two drops (Fig. 2D) is sufficiently stable, it can
grow by attachment of additional drops; thus, aggregates
of drops (floes) are produced.

If the stirring of an emulsion is ceased, there is no longer
generation of new droplets, but the opposite processes of
drop flocculation and/or coalescence continue. After some
period of time this will lead to the appearance of suffi-
ciently large floes and/or drops, for which the gravitational
force is stronger than the Brownian force; this will lead to
a directional motion of the drops/floes upwards (creaming)
or downwards (sedimentation), depending on whether the
buoyancy force or the drop weight prevails.

As an illustrative example, Fig. 3 shows the occurrence
of the creaming in an oil-in-water emulsion stabilized by
the protein βS-lactoglobulin —- data from Ref. 5. The rise
of the boundary between the lower transparent aqueous
phase (serum) and the upper turbid emulsion phase is
recorded as a function of time; in particular, the ratio of the
volume of the serum to the total volume (turbid plus trans-

parent phase) is plotted versus time. Two types of emul-
sions are used in these experiments: “coarse” and “fine”
emulsion of average drop size 5 and 0.35 µrn, respectively.
In Fig. 3 one sees that, in the fine emulsion, creaming is not
observed (the volume of the separated serum is zero). In
contrast, there is creaming in the coarse emulsion, which
starts some time after the initial moment (the ceasing of ag-
itation); this period is necessary for “incubation” of suffi-
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Figure 1 Schematic presentation of the zone of contact between
two approaching emulsion drops. The convective outflow of liquid
from the gap between the drops drags the surfactant molecules
along the two film surfaces: j and js denote the bulk- and surface-
diffusion fluxes of surfactant.

Figure 2 Possible consequences from a collision between two
emulsion drops. Step A → B: the two drops approach each other
under the action of a driving force F; the viscous friction, accom-
panying the expulsion of liquid from the gap between the two
drops, decelerates their approach. Step B → C: after reaching a
given critical distance between the two drop surfaces coalescence
takes place. Step B → D: after reaching a given threshold dis-
tance, hinv, between the two drop surfaces, called the inversion
thickness, the spherical drops deform and a film is formed in the
zone of their contact. Step D → C: the film, intervening between
the two drops, thins and eventually breaks after reaching a certain
critical thickness, then the two drops coalesce.

Figure 3 Experimental data for creaming in xylene-in-water emul-
sions. The volume of the transparent “serum” left below the
creaming emulsion, scaled with the total volume of the liquid mix-
ture, is plotted against the time elapsed after ceasing the agitation.
The emulsion is stabilized with β-lactoglo-bulin, whose concen-
trations, corresponding to the separate curves, are shown in the
figure. The empty and full symbols denote, respectively, “coarse”
emulsion (mean drop size 5µm) and “fine” emulsion (mean drop
size 0.35 µm).
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ciently large floes, which are able to emerge under the ac-
tion of the buoyancy force. The stabilizing effect of SbT-
lactoglobulin is manifested as an increase in the “incubation
period” with the rise of protein concentration.

The theoretical description of the mutual approach and
coalescence of two emulsion drops is the subject of Sec.
IV; the Bancroft rule on emulsiflcation is interpreted and
generalized in Sec. V; and the kinetics of flocculation is
considered in Sec. VI, where the size of the aggregates
needed for the creaming to start is estimated.

II. DYNAMICS OF SURFACTANT
ADSORPTION MONOLAYERS

A. Gibbs (Surface) Elasticity

1. Nonionic Surfactant Solutions

Let us consider the boundary between an aqueous solution
of a nonionic surfactant and the oil phase. We choose the di-
viding surface to be the equimolecular dividing surface
with respect to water. The Gibbs adsorption equation then
takes the form (6, 7):

sponds to a physical model of localized adsorption, whereas
the latter corresponds to nonlocalized adsorption. The
Frumkin and van der Waals isotherms generalize, respec-
tively, the Langmuir and Volmer isotherms for the case
when there is interaction between the adsorbed molecules;
β is a parameter which accounts for the interaction. In the
case of the van der Waals interaction, β can be expressed in
the form (12, 13):
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where the subscript “1” denotes the nonionic surfactant, C1
and T1 are its bulk concentration and adsorption, k is the
Boltzmann constant, and T is the temperature. The surfac-
tant adsorption isotherms, expressing the connection be-
tween T1 and c1, are usually obtained by means of some
molecular model of the adsorption. The most popular is the
Langmuir (8) adsorption isotherm;

which stems from a lattice model of localized adsorption
of noninteracting molecules (9). In Eq. (3) Γ∞ is the max-
imum possible value of the adsorption (Γ1→ Γ∞ for c1→
∞). On the other hand, for c1 → 0 one has Γ1≈ Kc1; the
adsorption parameter K characterizes the surface activity
of the surfactant: the greater K the higher the surface ac-
tivity.

Table 1 lists the six most popular surfactant adsorption
isotherms, i.e., those of Henry, Freundlich, Langmuir,
Volmer (10), Frumkin (11), and van der Waals (9). For c1→
0 all other isotherms (except that of Freundlich) reduce to
the Henry isotherm. The physical difference between the
Langmuir and Volmer isotherms is that the former corre-

where u(r) is the interaction energy between two adsorbed
molecules, and r0 is the distance between the centers of the
molecules at close contact. The comparison between theory
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and experiment shows that the interaction parameter β is
important for air—-water interfaces, whereas for oil—-
water interfaces one can set β = 0 (14, 15). The latter fact,
and the finding that β > 0 for air-water interfaces, leads to
the conclusion that β takes into account the van der Waals
attraction between the hydrocarbon tails of the adsorbed
surfactant molecules across air (such attraction is missing
when the hydrophobic phase is oil). Note, however, that
even for an oil-water interface one could have β < 0 if some
nonelectrostatic repulsion between the adsorbed surfactant
molecules takes place, say steric repulsion between some
chain branches of amphiphilic molecules with a more com-
plicated structure.

Concerning the parameter K in Table 1, this is related to
the standard free energy of adsorption, ∆f = µ - µ, which is
the energy gain for bringing a molecule from the bulk of
the water phase to a diluted adsorption layer (3, 16):

correspond to variations in surface tension and adsorption
during a real process of interfacial dilatation. Expressions
for EG, corresponding to various adsorption isotherms, are
shown in Table 2. As an example, let us consider the ex-
pression for Eg, corresponding to the Langmuir isotherm;
combining the results from Tables 1 and 2 one obtains:
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Here, δ1 is a parameter, characterizing the thickness of the
adsorption layer, which can be set (approximately) equal
to the length of the amphiphilic molecule. Let us consider
the integral:

The derivative d ln c1/dT1 can be calculated for each ad-
sorption isotherm in Table 1 and then the integration in Eq.
(6) can be carried out analytically (17). The expressions for
J thus obtained are also listed in Table 1. The integration of
the Gibbs adsorption isotherm, Eq. (2), along with Eq. (6),
yields (17):

which in view of the expressions for J in Table 1 presents
the surfactant adsorption isotherm, or the two-dimensional
(surface) equation of state.

As mentioned in the Sec. I, an important thermo-dy-
namic parameter of a surfactant adsorption monolayer is its
Gibbs (surface) elasticity. The physical concept of surface
elasticity is the most transparent for monolayers of insolu-
ble surfactants, for which it was initially introduced by
Gibbs (18, 19). The increments ∆ σ and ∆Γ1 in the defini-
tion of Gibbs elasticity:

One sees that for Langmuirian adsorption the Gibbs elastic-
ity grows linearly with the surfactant concentration c1.
Since the concentration of the monomeric surfactant cannot
exceed the critical micellization concentration, C1≤CCMC,
then from Eq. (9) one obtains:

Hence, one could expect higher elasticity EG for surfac-
tants with higher CCMC; this conclusion is consistent with
the experimental results (20).

The Gibbs elasticity characterizes the lateral fluidity of
the surfactant adsorption monolayer. For high values of the
Gibbs elasticity the adsorption monolayer at a fluid inter-
face behaves as tangentially immobile. Then, if two oil
drops approach each other, the hydro-dynamic flow pattern,
and the hydrodynamic interaction as well, is the same as if
the drops were solid particles, with the only difference that
under some conditions they could deform in the zone of
contact. For lower values of the Gibbs elasticity the
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Marangoni effect appears, see Eq. (1), which can consider-
ably affect the approach of the two drops. These aspects of
the hydrodynamic interactions between emulsion drops are
considered in Sec. IV.

In the case of a soluble nonionic surfactant the detected
increase in a in a real process of interfacial dilatation can be
a pure manifestation of surface elasticity only if the period
of dilatation,∆t, is much shorter than the characteristic re-
laxation time of surface tension τσ, ∆t ` τσ (21). Other-
wise, the adsorption and the surface tension would be
affected by the diffusion supply of surfactant molecules
from the bulk of solution toward the expanding interface.
The diffusion transport tends to reduce the increase in sur-
face tension upon dilatation, thus apparently rendering the
interface less elastic and more fluid. The initial condition
for the problem of adsorption kinetics involves an “instan-
taneous” (∆t` τσ) dilatation of the interface. This “instan-
taneous” dilatation decreases the adsorptions Γi; and the
subsurface concentrations cis of the species (the subsurface
is presumed to be always in equilibrium with the surface),
but the bulk concentrations ci∞ remain unaffected (22—
24). This initially created difference between cis and ci∞
further triggers the diffusion process. Now, let us inspect
closer how this approach is to be extended to the case of
ionic surfactants.

2. Ionic Surfactant Solutions

The thermodynamics of adsorption of ionic surfactants is
more complicated due to the presence of long-range elec-
trostatic interactions in the system. Let us consider a bound-
ary between two immiscible fluid phases (say, water and
oil), which bears some electric charge owing to the adsorp-
tion of charged amphiphilic molecules (ionic surfactant).
The charged surface repels the colons, i.e., ions having a
charge of the same sign, but it attracts the counterions,
which bear a charge of the opposite sign (Fig. 4). Thus, an
electric double layer (EDL) appears, that is, a nonuniform
distribution of the ionic species in the vicinity of the
charged interface (25). The conventional model of the EDL
stems from the works of Gouy (26), Chapman (27), and
Stern (28). According to this model the EDL consists of
two parts: (1) adsorption layer; and (2) diffuse layer (see
Fig. 4). The adsorption layer includes surfactant molecules,
which are immobilized (adsorbed) at the phase boundary, as
well as bound counterions, which form the Stern layer. The
diffuse layer consists of free ions in the aqueous phase,
which are involved in Brownian motion and are influenced
by the electric field of the charged interface. The boundary,
separating the adsorption from the diffuse layer, called the
Gouy plane, can be used as a Gibbs dividing surface be-

tween the two neighboring phases (15). The electric poten-
tial varies across the EDL: ψ = ψ(x). The boundary values
of ψ(x) are ψ(x = 0) = ψs at the Gouy plane (at the interface)
and ψ(x→ ∞) = 0 in the bulk of the solution. At equilibrium,
the subsurface concentrations of the ionic species, cis, are
related to the respective bulk concentrations, ci∞, by means
of the Boltzmann distribution (25):
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Figure 4 EDL formed in the vicinity of an adsorption monolayer
of ionic surfactant. The diffuse layer contains free ions involved
in Brownian motion, while the Stern layer consists of adsorbed
(immobilized) counterions. Near the charged surface there is an
accumulation of counterions and a depletion of coions.

where i = 1, 2, 3, …, N. Here, e is the electronic charge,
and zi, is the valency of the z’th ion. The Gibbs adsorption
equation can be presented in the form (15, 17, 29—31):

Equations (11) and (12) are rigorous in terms of activities
of the ionic species, rather than in terms of concentrations.
For simplicity, here we set the activities equal to the con-
centrations, which is a good approximation for ionic
strengths below 0.1 M; see Refs 14, 15 and 17 for details.
In Eq. (12), Γi,denotes the adsorption of the z’th compo-
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nent, and Γi, represents the surface excess of component
“i“ with respect to the uniform bulk solution. For an ionic
species, Γi is a total adsorption, which includes contribu-
tions Γi and Λi, respectively, from the adsorption layer (ad-
sorbed surfactant plus counterions in the Stern layer) and
the diffuse layer, which are denned as follows (17, 29—
31):

tively. For the special system of SDS with NaCl c1 ∞, c2 ∞,
and c3 ∞ are the bulk concentration of the DS-, Na+, and
Cl- ions, respectively. The requirement for the bulk solution
to be electroneutral implies that c2 ∞ = c1 ∞ + c3 ∞. The
binding of coions due to the non-amphiphilic salt is ex-
pected to be equal to zero, Γ3 = 0, because they are repelled
by the similarly charged interface (17). However, A3 ≠ 0;
hence, Γ3 = A3 ≠ 0. The difference between the adsorptions
of surfactant ions and counterions determines the surface
charge density, ρs = ez (Γ1 - Γ2). For the considered system,
Eq. (11) can be presented in the form:
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Using the theory of EDL and Eq. (13) one can prove that
the Gibbs adsorption equation, Eq. (12), can be represented
in the following equivalent form (17):

where σa = σ - σd = σ0 - kTJ is the contribution of the ad-
sorption layer to the surface tension [J is the same as in Eq.
(6) and Table 1], and σb is the contribution of the diffuse
layer (17, 29):

where ε is the dielectric permittivity of the aqueous phase.
The integrand in Eq. (15) represents the aniso-tropy of the
Maxwell electric stress tensor, which contributes to the in-
terfacial tension in accordance with the known Bakker for-
mula (32—34). The comparison between Eqs (12) and (14)
shows that the Gibbs adsorption equation can be expressed
either in terms of σ, Γi,, and ci∞, or in terms of σa, i, and
cis. The total surface tension is

Note that σb represents a nonlocal, integral contribution of
the whole diffuse EDL, whereas σa is related to the two-di-
mensional state of the adsorbed surfactant ions and bound
counterions (Fig. 4).

Let us consider a solution of ionic surfactant, which is a
symmetric z:z electrolyte, in the presence of additional non-
amphiphilic z:z electrolyte (salt); here, z ≡ z1 = -z2 = z3. We
assume that the counterions due to the surfactant and salt
are identical. For example, this can be a solution of sodium
dodecyl sulfate (SDS) in the presence of NaCl. We denote
by c1∞, c2 ∞, and c3 ∞ the bulk concentrations of the sur-
face active ions (1), counterions (2), and coions (3), respec-

(i = 1, 2, 3). Note that the dimensionless surface electric
potential øs thus defined is always positive, irrespective of
whether the surfactant is cationic or anionic.

Let us proceed with the definition of Gibbs elasticity for
an adsorption monolayer from ionic surfactant. The main
question is whether or not the electric field in the EDL
should be affected by the “instantaneous” dilatation of the
interface, —- ∆Γ1; which is involved in the definition of
EG - see Eq. (8). This problem has been examined in Ref.
35 and it has been established that a variation of the electric
field during the initial instantaneous dilatation leads to re-
sults that are unacceptable from a theoretical viewpoint.
The latter conclusion is related to the following facts: (1)
the speed of propagation of the electric signals is much
greater than the characteristic rate of diffusion; and (2) even
a small initial variation in the surface charge density ρs im-
mediately gives rise to an electric potential, which is lin-
early increasing with the distance from the interface
(potential of a planar wall). Consequently, a small initial
perturbation of the interface would immediately affect the
ions in the whole solution; of course, such an initial condi-
tion is physically unacceptable. In reality, a linearly grow-
ing electric field could not appear in an ionic solution,
because a variation of the surface-charge density would be
immediately suppressed by exchange of counterions, which
are abundant in the subsurface layer of the solution. The
theoretical equations suggest the same (35): to have a math-
ematically meaningful initial condition of small perturba-
tion for the diffusion problem, the initial dilatation must be
carried out at constant surface-charge density ρs; for details
see the Appendix in Ref. 35. Thus, the following conclusion
has been reached: the initial sudden inter-facial dilatation,
which is related to the definition of Gibbs elasticity of a
soluble ionic surfactant, must be carried out at ρs = con-
stant. From Eq. (16) one obtains (36):
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An interfacial dilatation at constant ρs does not alter the
diffuse part of the EDL, and consequently, (dσd)ρ ρ 0, see
Eq. (15). Since (17),

from Ref. 17); then, Eq. (22) predicts an increase in EG
with the rise in salt concentration.

A numerical illustration of the latter prediction is given
in Fig. 4. The Gibbs elasticity is calculated with the help of
Eq. (22), i.e., the Langmuir isotherm, using the values of
K1, K2, and Γ∞ determined in Ref. 17 from the fit of exper-
imental data due to Tajima and coworkers (38, 39) for
sodium dodecyl sulfate (SDS). The surface potential øs is
computed as a function of the surfactant and salt concentra-
tions using steps 2—6 of the calculation procedure de-
scribed in Sec. 9.2 of Ref. 17 with β = 0. As seen in Fig. 4,
EG increases with the rise in surfactant (SDS) concentra-
tion. Moreover, for a fixed surfactant concentration one ob-
serves a strong increase in EG with increase in NaCl
concentration. To understand this behavior of EG we notice
that, according to Table 2, EG depends explicitly only on
Γ1 at fixed temperature T. Hence, the influence of surfac-
tant and salt on the Gibbs elasticity EG can be interpreted
as an increase in the surfactant adsorption Γ1 with the rise
in both surfactant and salt concentrations.

B. Characteristic Time of Adsorption

1. Nonionic Surfactant Solutions

The characteristic time of surfactant adsorption at a fluid
interface is an important parameter for surfactant-stabilized
dynamic systems such as emulsions. Sutherland (22) de-
rived an expression describing the relaxation of a small di-
latation of an initially equilibrium adsorption monolayer
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the expressions for J in Table 1 show that σa depends only
on Γ1 at constant temperature. The definition of Gibbs elas-
ticity of nonionic adsorption layers can then be extended
to ionic adsorption layers in the following way (36):

The definition of Gibbs elasticity given by Eq. (19) corre-
sponds to an “instantaneous” (∆tt ` τσ) dilatation of the
adsorption layer (that contributes to σa) without affecting
the diffuse layer and σd. The dependence of σ on Γ1 for
nonionic surfactants is the same as the dependence of σa
on Γ1 for ionic surfactants, cf. Eqs (7) and (19). Equations
(8) and (20) then show that the expressions for EG in Table
2 are valid for both nonionic and ionic surfactants. The ef-
fect of the surface electric potential on the Gibbs elasticity
EG of an ionic adsorption monolayer is implicit, through
the equilibrium surfactant adsorption Γ1; which depends
on the electric properties of the interface. To illustrate this
let us consider the case of Langmuir adsorption isotherm
for an ionic surfactant (17):

where K1 and K2 are constants. Note that the above linear
dependence of the adsorption parameter K on the subsur-
face concentration of counterions, c2s, can be deduced
from the equilibrium exchange reactions, which describe
the adsorption of surfactant ions and counterions (see Ref.
37). Combining the respective expression from Table 2
with Eq. (21) we obtain EG = Γ∞kTKc1s. Further, having
in mind that K = K1 + K2 c2s, we substitute Eq. (17) to de-
rive

Equation (22) reveals the effect of salt on EG: when the salt
concentration increases, c2∞ also increases, whereas the
(dimensionless) surface potential øs decreases (see Fig. 5,

Figure 5 Plot of the Giibs (surface) elasticity EG vs. the surfactant
(SDS) concentration, c1∞. The four curves correspond to four
fixed NaCl concentrations: 0, 20, 50, and 115 mM; EG is calcu-
lated by means of Eq. (22) using paraameters values determined
from the best fit of experimental data in Ref. 17.
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from soluble nonionic surfactant (diffusion control):

where, as usual, EG denotes Gibbs elasticity. Comparison
of Eqs (25) and (27) shows that the relaxation of surface
tension is characterized by the same relaxation time τ1, ir-
respective of whether the interfacial perturbation is large
or small. (The same conclusion is valid also for ionic sur-
factants, see below.) For that reason the relaxation time can
be considered as a general kinetic property of the adsorp-
tion monolayer (36).

2. Ionic Surfactant Solutions

In the case of ionic surfactants the existence of a diffuse
EDL essentially influences the kinetics of adsorption. The
process of adsorption is accompanied by a progressive in-
crease in the surface-charge density and electric potential.
The charged surface repels the incoming surfactant mole-
cules, which results in a deceleration of the adsorption
process (54). Theoretical studies on the dynamics of ad-
sorption encounter difficulties with the nonlinear set of par-
tial differential equations, which describes the
electrodiffusion process (55).

Another important effect, which adds to the complexity
of the problem, is the adsorption (binding) of counterions
at the conversely charged surfactant head-groups in the ad-
sorption layer, see Fig. 4. The adsorbed (bound) counteri-
ons form the Stern layer, which strongly affects the
adsorption kinetics of ionic surfactants insofar as up to
70—90% of the surface electric charge could be neutralized
by the bound counterions (17, 56—58). The addition of
nonamphiphilic electrolyte (salt) in the solution increases
the occupancy of the Stern layer. It turns out that in the case
of ionic surfactants (with or without salt) there are two ad-
sorbing species: the surfactant ions and the counter-ions.
The adsorption of counterions can be described by means
of the Stern isotherm (6, 17, 28). It is worthwhile noting
that the counterion binding enhances the adsorption of sur-
factant (17); formally, this appears as a linear increase in
the surfactant adsorption parameter K with the rise in the
subsurface concentration of counterions, c2s, see Eq. (21).

In recent papers (35, 36) the problem of the kinetics of
adsorption from an ionic surfactant solution has been ad-
dressed in its full complexity, including the time evolution
of the EDL, the effect of added salt, and the counterion
binding. An analytical solution was found only in the as-
ymptotic cases of small and large initial deviations from
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where t is time,

is the characteristic relaxation time, and D1 is the surfactant
diffusivity; here and hereafter the superscript “(e)“ denotes
the equilibrium value of the respective parameter; erfc(x) is
the complementary error function (40—42). Using the as-
ymptotics of the latter function for xp 1 one obtains

Equation (25) is often used as a test to verify whether the
adsorption process is under diffusion control: data for the
dynamic surface tension σ(t) are plotted versus t-1/2 and it is
checked if the plot complies with a straight line; the extrap-
olation of this line to t-1/2 →0 is used to determine the equi-
librium surface tension σ(e) (23, 43).

In the experiment one often deals with large initial de-
viations from equilibrium; for example, such is the case
when a new oil-water interface is formed by the breaking
of larger emulsion drops during emulsification. In the case
of large perturbation there is no general analytical expres-
sion for the dynamic surface tension σ(t) since the adsorp-
tion isotherms (except that of Henry, see Table 1) are
nonlinear. In this case one can use either a computer solu-
tion (44, 45) or apply the von Karman approximate ap-
proach (46, 47). Analytical asymptotic expressions for the
long time (t p τ1) relaxation of surface tension of a non-
ionic surfactant solution was obtained by Hansen (48):

When deriving Eq. (26), the surfactant adsorption at the ini-
tial moment was set to zero, Γ1(0) = 0. Equation (26) has
been verified, utilized, and generalized by many authors
(24,49—53). With the help of Eqs (2), (8), and (24) one can
represent Eq. (26) in the following equivalent form:
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equilibrium and long times of adsorption. Thus, general-
izations of Eqs (25) and (27) for the case of ionic surfac-
tants was obtained (see below). An interesting result is that
the electrostatic interaction leads to the appearance of three
distinct characteristic relaxation times, those of surfactant
adsorption τ1, of counterion adsorption (binding) τ2, and
of surface-tension relaxation τσ. In particular, the relaxation
of surfactant and counterion adsorptions, Γ1 and Γ2, under
electrodiffusion control, is described by the equation:

is from 2 to 6 orders of magnitude. For example, the relax-
ation time of surface tension, τσ, drops from about 40 s for
10-5 M SDS down to ≈ 4 × 10-5 s for 10-3 M SDS (see Fig.
6a). In addition, one sees that systematically τ2 < τ1 < τσ;
the difference between these three relaxation times can be
greater than one order of magnitude for the lower surfactant
concentrations, especially in the case without added elec-
trolyte (Fig. 6b). One can conclude that the terms propor-
tional to w in Eq. (29), which give rise to the difference
between τ1 and τσ, play an important role, particularly for
solutions of lower ionic strength. Figure 6 demonstrates

629Dynamics Surfactant-stabilized Emulsions

where τ1 and τ2 are given by a generalized version of Eq.
(24), which can be found in Refs 35 and 36 together with
the procedure for calculations. The relaxation of interfacial
tension of ionic surfactant solutions is given again by Eqs
(25) and (27), in which τ1 is to be replaced by τσ defined
as follows (36):

where k is the Debye parameter,

The latter expression for the parameter λ corresponds to the
case of large perturbations; for small perturbations one sim-
ply has λ ≡ 1 (36). The computations show that for large
perturbations λ is close to 1, and therefore the relaxation
time is not sensitive to the magnitude of perturbation.

As an illustration, we show in Fig. 6 the calculated de-
pendence of the relaxation times τ1, τ2, and τσ on the sur-
factant concentration. As in Fig 5, we have used the values
of K1, K2, and Γ∞ determined in Ref. (17) from the fit of
experimental data due to Tajima and coworkers (38, 39) for
SDS. All necessary equations and the procedure of calcu-
lation are described in Ref. 36 for the case of large pertur-
bations. The range of surfactant and salt concentrations
correspond to the nonmicellar surfactant solutions studied
experimentally in Refs 38 and 39. In Fig. 6a and b one no-
tices the wide range of variation in relaxation times, which

Figure 6 Ionic surfactant solution: relaxation times of interfacial
tension. τσ, of surfactant adsorption, τ1, and of counterion adsorp-
tion (binding), τ2, calculated in Ref. 36 as functions of surfactant
(SDS) concentration, c1∞, using parameters values determined
from the best fit of experimental data in Ref. 17. (a) SDS solutions
with 115 mM added NaCl; (b) SDS solutions without added NaCl.
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that the approximation τσ ≈ τ1, which is widely used in the
literature, is applicable only for the higher surfactant con-
centrations, for which τσ → τ1. Note also that for a given
surfactant concentration τ2 is always smaller than τ1 and
τσ, that is, the adsorption of counter-ions relaxes faster than
does the adsorption of surfactant ions and the surface ten-
sion.

The physical importance of these results is related to the
fact that the coalescence of drops at the early highly dy-
namic stages of emulsion production is expected to be sen-
sitive to the degree of saturation of the newly created
interfaces with surfactant, and correspondingly, to the re-
laxation time of surfactant adsorption. The surfactant trans-
port is especially important when the emulsion is prepared
from nonpre-equilibrated liquid phases. In such cases one
can observe dynamic phenomena like the cyclic dimpling
(59, 60) and osmotic swelling (61), which bring about ad-
ditional stabilization of the emulsions (see also Refs 1 and
62).

3. Micellar Surfactant Solutions

Emulsions are often prepared from micellar surfactant so-
lutions. As known, above a given critical micelle concentra-
tion (cmc) surfactant aggregates (micelles) appear inside
the surfactant solutions. At rest the micelles exist in equi-
librium with the surfactants monomers in the solution. If
the concentration of the monomers in the solution is sud-
denly decreased, the micelles release monomers until the
equilibrium concentration, equal to cmc, is restored at the
cost of disassembly of a part of the micelles (63, 64).

The dilatation of the surfactant adsorption layer leads to
a transfer of monomers from the subsurface to the surface,
which causes a transient decrease in the subsurface concen-
tration of monomers. The latter is compensated for by dis-
integration of a part of the micelles in the subsurface layer.
This process is accompanied by a diffusion transport of sur-
factant monomers and micelles due to the appearance of
concentration gradients. In general, the micelles serve as a
powerful source of monomers which is able to saturate
quickly the surface of the newly created emulsion drops.
In this way, the presence of surfactant micelles strongly ac-
celerates the kinetics of adsorption.

The theoretical model developed by Aniansson and
coworkers (65-68) describes the micelles as polydisperse
aggregates, whose growth or decay happens by exchange of
monomers. The general theoretical description of the diffu-
sion in such a solution of polydisperse aggregates taking
part in chemical reactions (exchange of monomers) is a
heavy task; nevertheless, it has been addressed in several

works (69—72). The relaxation of surface tension of a mi-
cellar solution at small initial deviation from equilibrium
can be described by the following expression, derived in
Ref. 70:
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where τm and τdare the characteristic relaxation times of
micellization and monomer diffusion (see Ref. 73). For the
sake of estimates τd can be identified with τ1 as given by
Eq. (24); Kd is the rate constant of micelle decay; as earlier,
the index “(e)“ refers to the equilibrium state; and m is the
average micelle aggregation number. In the absence of mi-
celles τd/τm → 0; then, g1 = 1, g2 = 0, and Eq. (32) reduces
to Eq. (23), as should be expected. One can estimate the
characteristic time of relaxation in the presence of micelles
by using the following combined expression:

According to the latter τσ expression τσ ≈ τm for τdp τm,
and τσ ≈ τd for τd` τm.

Equation (32) is applicable only for small perturbations.
An approximate analytical approach, which is applicable
for both small and large deviations from equilibrium, is de-
veloped in Ref. 47.

III. MECHANISMS OF COALESCENCE

A. Mechanisms of Rupture of Emulsion Films

1. Thermodynamic and Kinetic Factors
Preventing Coalescence

Often the contact of two emulsion drops is accompanied
by the formation of a liquid film between them. The rupture
of this film is equivalent to coalescence of the drops, that is,
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step D→C in Fig 2. Figure 7 shows schematically the zone
of contact between two emulsion drops of different radii,
R1 and R2 (R1 < R2). For the sake of simplicity we assume
that the two drops are composed of the same liquid and
have the same surface tension σ. The film formed in the
contact zone has radius R and thickness h. The interaction
of the two drops across the film leads to the appearance of
an additional disjoining pressure Π inside the film, which
in general depends on the film thickness: Π = Π (h) (see,
e.g., Refs 2—4 and 62). Positive Π corresponds to repul-
sion between the two film surfaces (and the two drops),
whereas negative Π corresponds to attraction between
them. The presence of a disjoining pressure gives rise to a
difference between the tension of the film surfaces, σf, and
the interfacial tension σ of the droplets. The force balance
at the contact line reads (62, 74, 75):

Waals attraction, which dominates Π for the larger h (see
Fig. 8a). Geometrically, α appears as the angle subtended
between the tangents to the film and drop surfaces at the
contact line (Fig. 7). At equilibrium (no applied external
force) the radius of the film between the two drops is deter-
mined by the equation:
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where a is the contact angle, which is related to the disjoin-
ing pressure n as follows (62, 76):

Since cos α < 1, a necessary condition to have a contact
angle is for the integral in Eq. (36) to be negative; for emul-
sion drops this can be ensured by the longrange van der

Figure 7 Sketch of a film between two nonidentical emulsion
drops of radii R1 and R2. The film thickness and radius are de-
noted by h and R, respectively; α is the contact angle, and P1, P2,
and P3 denote the pressure in the respective liquid phases.

Figure 8 Typical plots of disjoining pressure Π vs. film thickness h; PA is the pressure difference applied across the film surface, see Eq
(43); the equilibrium states of the liquid film correspond to the points in which Π = PA. (a) DLVO-type disjoining-pressure isotherm Π
(h); the points at h = h1 and h2 correspond to primary and secondary films, respectively; Πmax is the height of a barrier resulting from the
electrostatic repulsion between the film surfaces, (b) Oscillatory structural force between the two film surfaces caused by the presence of
surfactant micelles (or other monodisperse colloidal particles) in the continuous phase; Π (h) exhibits multiple decaying oscillations; the
stable equilibrium films with thickness h0, h1, h2, and h3 corresponds to stratifying films containing 0, 1, 2, and 3 layers of micelles, re-
spectively (see Fig. 9).
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where Rf is the curvature radius of the film. Equation (37)
follows from Eqs (144) and (179) in Ref. 75. One sees that
the greater the contact angle α, the larger the equilibrium
film radius R. On the other hand, for α = 0 the equilibrium
film radius R is also zero and there are no equilibrium dou-
blets or larger aggregates (flocs) of emulsion droplets.

If the two drops have different radii, as in Fig. 7, the film
between them is curved. The balance of the pressures ap-
plied per unit area of the two film surfaces can be expressed
by means of versions of the Laplace equation (75): At the last step we have used also Eqs (35), (40), and (41).

For two identical drops Rf → ∞, and then PA reduces to the
capillary pressure of the drops: PA = 2σ/R1 = 2σ/R2. The
condition Π = PA, see Eq. (42), means that at equilibrium
the disjoining pressure Π counterbalances the pressure dif-
ference PA applied across the film surface. In addition, the
condition ∂Π/∂h < 0 guarantees that the equilibrium is sta-
ble (rather than unstable).

As an illustration, Fig. 8a shows a typical DLVO-type
disjoining-pressure isotherm Π(h) (see Refs 3, 4 and 62 for
more details). There are two points, h = h1 and h = h2, at
which the condition for stable equilibrium, Eq. (42), is sat-
isfied. In particular, h = h1 corresponds to the so-called pri-
mary film, which is stabilized by the electrostatic (double
layer) repulsion. The addition of electrolyte to the solution
may lead to a decrease in the height of the electrostatic bar-
rier, Πmax (3,4); at high electrolyte concentration it is pos-
sible to have Πmax < PA, then the primary film does not
exist. Note, however, that the increase in electrolyte con-
centration may lead also to a shift in the maximum toward
smaller thicknesses and to an increase in the barrier Πmax.
Therefore, primary films could be observed even at rela-
tively high salt concentrations.

The equilibrium state at h = h2 (Fig. 8a) corresponds to
a very thin secondary film, which is stabilized by the short-
range Born repulsion. The secondary film represents a bi-
layer of two adjacent surfactant mono-layers; its thickness
is usually about 5 nm (slightly greater than the doubled
length of the surfactant molecule) (77). Secondary films
can be observed in emulsion floes and in creamed emul-
sions.

The situation is more complicated when the aqueous so-
lution contains surfactant micelles, which is a common ex-
perimental and practical situation. In such a case the
disjoining pressure isotherm Π(h) can exhibit multiple de-
caying oscillations, whose period is close to the diameter of
the micelles (Fig. 8b) (for details see, e.g., Ref. 78). The
condition for equilibrium liquid film, Eq. (42), can be sat-
isfied at several points, denoted by h0, h1, h2, and h3 in
Fig. 8b; the corresponding films contain 0, 1,2, and 3 layers
of micelles, respectively. The transitions between these
multiple equilibrium states represent the phenomenon strat-
ification (see Fig. 9 and Refs 78-91). The presence of dis-
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where P1 and P2 are the pressures inside the respective
drops (Fig. 7), and P3 is the pressure in the continuous
phase; the effect of disjoining pressure is equivalent to an
increase in the pressure within the film, which is P3 + Π. To
obtain Eqs (38) and (39) we have neglected some very
small terms, of the order of h/Rf (see Ref. 75 for details). To
determine Rf we apply the Laplace equations for the two
drops (Fig. 7):

Combining Eqs (36) and (38)-(40) one determines the cur-
vature radius of the film:

If the two drops have identical size (R1 = R2), then Eq. (41)
yields 1/Rf → 0, i.e., the film between the drops is flat, as
should be expected.

The disjoining pressure n is the major thermodynamic
stabilizing factor against drop coalescence. A stable equilib-
rium state of a liquid film can exist only if the following
two conditions are satisfied (3):

Here, PA is the pressure difference applied across the sur-
face of the film, which in view of Eqs (38) and (39) can be
expressed in the form:
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joiningpressure barriers, which result from either the elec-
trostatic repulsion (Fig. 8a) or the oscillatory structural
forces (Fig. 8b), has a stabilizing effect on liquid films and
emulsions (2).

The existence of a stable equilibrium state (see Fig. 8)
does not guarantee that a draining liquid film can “safely”
reach this state. Indeed, hydrodynamic instabilities, accom-
panying the drainage of liquid, could rupture the film be-
fore it has reached its thermodynamic equilibrium state (1).
There are several kinetic stabilizing factors, which suppress
the hydrodynamic instabilities and decelerate the drainage
of the film, thus increasing its lifetime. Such a factor is the
Gibbs (surface) elasticity, EG, of the surfactant adsorption
mono layers (see Sec. II. A); it tends to eliminate the gra-
dients in adsorption and surface tension and damps the fluc-
tuation capillary waves. At higher surfactant and salt
concentrations the Gibbs elasticity is also higher and it ren-
ders the interface tangentially immobile (see Fig. 5). The
surface viscosity also impedes the drainage of water out of
the films because of the dissipation of a part of the kinetic
energy of the flow within the surfactant adsorption mono-
layers (see Sec. IV). The surfactant adsorption relaxation
time (see Sec. II.B) is another important kinetic factor. If
the adsorption relaxation time is short enough, a dense ad-
sorption monolayer will cover the newly formed emulsion
drops during the emulsification and will protect them
against coalescence upon collision. In the opposite case
(slow adsorption kinetics) the drops can merge upon colli-
sion and the emulsion will be rather unstable.

2. Mechanism of Film Breakage

The role of the emulsion stabilizing (or destabilizing) fac-
tors can be understood if the mechanism of film breakage

is known. Several different mechanisms of rupture of liquid
films have been proposed, which are briefly described
below.

The capillary-wave mechanism has been proposed by de
Vries (92) and extended in subsequent studies (2, 24, 93—
98) (see Fig. 10a). The conventional version of this mech-
anism is developed for the case of monotonic attraction
between the two surfaces of a liquid film (say, van der
Waals attraction). Thermally excited fluctuation capillary
waves are always present at the film surfaces. With the de-
crease in average film thickness, h, the attractive disjoining
pressure enhances the amplitude of some modes of the fluc-
tuation waves. At a given critical value of the film thick-
ness, hc, corrugations on the two opposite film surfaces can
touch each other and then the film will break (97). The
same mechanism takes place also in the case of slightly de-
formed emulsion drops. If the emulsion drops are quies-
cent, only the thermodynamic and geometric factors
determine the critical thickness; indeed, the finite area of
the drops (films) imposes limitation on the maximum
length of the capillary waves (see Secs III.B and III.C).
When the breakage happens during the drainage of the
emulsion film (during the approach of the emulsion drops),
then the critical thickness is also affected by various hydro-
dynamic factors (see Sec. IV for details).

The mechanism of film rupture by nucleation of pores
has been proposed by Derjaguin and Gutop (99) to explain
the breaking of very thin films, built up from two attached
monolayers of amphiphilic molecules. Such are the second-
ary foam and emulsion films and the bilayer lipid mem-
branes. This mechanism was further developed by
Derjaguin and Prokhorov (3, 100, 101), Kashchiev and
Exerowa (102—104), Chizmadzhev and coworkers (105—
107), and Kabalnov and Wennerström (108). The formation
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Figure 9 The spot of lower thickness in a stratifying liquid film corresponds to a local decrease in the number of micelle layers in the col-
loid-crystal-like structure of surfactant micelles formed inside the liquid film. The appearance of spots could be attributed to the conden-
sation of vacancies in that structure. (From Ref. 82.)
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of a nucleus of a pore (Fig. 10b) is favored by the decrease
in surface energy, but it is opposed by the edge energy of
the pore periphery. The edge energy can be described
(macroscopically) as a line tension (100—104) or (micro-
mechanically) as an effect of the spontaneous curvature and
bending elasticity of the amphiphilic monolayer (108). For
small nuclei the edge energy is predominant, whereas for
larger nuclei the surface energy gets the upper hand. Con-
sequently, the energy of pore nucleation exhibits a maxi-
mum at a given critical pore size; the larger pores
spontaneously grow and break the film, while the smaller
pores shrink and disappear.

A third mechanism of liquid-film breakage is observed
when there is a transport of solute across the film (see Fig.
10c). This mechanism, investigated experimentally and the-
oretically by Ivanov and coworkers (109—111), was ob-
served with emulsion systems (transfer of alcohols, acetic
acid, and acetone across liquid films), but it could appear
also in some asymmetric oil-water-air films. The diffusion
transport of some solute across the film leads to the devel-
opment of Marangoni instability, which manifests itself as

a forced growth of capillary waves at the film surfaces and
eventual film rupture. Note that Marangoni instability can
be caused by both mass and heat transfer (112—114).

A fourth mechanism of film rupture is the barrier mech-
anism. It is directly related to the physical interpretation of
the equilibrium states depicted in Fig. 8. For example, let us
consider an electrostatically stabilized film of thickness h1
(Fig. 8a). Some processes in the system may lead to an in-
crease in the applied capillary pressure PA. For instance, if
the height of the column of an emulsion cream increases
from 1 to 10 cm, the capillary pressure in the upper part of
the cream increases from 98 to 980 Pa owing to the hydro-
static effect. Thus, PA could become greater than the height
of the barrier, Πmax, which would cause either film rupture
(and coalescence) or transition to the stable state of second-
ary film at h = h2 (Fig. 8a). The increase in the surfactant
adsorption density stabilizes the secondary films. In addi-
tion, the decrease in Πmax decreases the probability of the
film rupturing after the barrier is overcome. Indeed, the
overcoming of the barrier is accompanied by a violent re-
lease of mechanical energy accumulated during the increase
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Figure 10 Mechanisms of breakage of liquid films, (a) Fluctuation-wave-mechanism: the film rupture results from growth of capillary
waves enhanced by attractive surface forces (92). (b) Pore-nudeation mechanism: it is expected to be operative in very thin films, virtually
representing two attached monolayers of amphiphilic molecules (99). (c) Solute-transport mechanism: if a solute is transferred across the
two surfaces of the liquid film due to gradients in the solute chemical potential, then Marangoni instability could appear and break the film
(109).
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in PA. If the barrier is high enough, the released energy
could break the liquid film. On the other hand, if the barrier
is not too high, the film could survive the transition.

The overcoming of the barrier can be facilitated by var-
ious factors. Often the transition happens through the for-
mation and expansion of spots of lower thickness within
the film, rather than by a sudden decrease in the thickness
of the whole film. Physically this is accomplished by a nu-
cleation of spots of submicrometer size, which resembles a
transition with a “tunnel effect,” rather than a real overcom-
ing of the barrier. A theoretical model of spot formation in
stratifying films by condensation of vacancies in the struc-
ture of ordered micelles (vacancy mechanism) has been de-
veloped in Ref. 82 (see Figs 8b and 9). The nucleation of
spots makes the transitions less violent and decreases the
probability of film breakage. The increase in applied cap-
illary pressure PA facilitates spot formation and the transi-
tion to a state with lower film thickness; this has been
established by Bergeron and Radke (85), who experimen-
tally obtained portions of the stable branches of the oscil-
latory disjoining-pressure curve (Fig. 8b) for foam films.
Oscillatory disjoining-pressure curves resulting from re-
verse micelles in an oily phase were directly measured by
Parker et al. (86) by using a version of the surface-force ap-
paratus. Marinova et al. (91) investigated the stabilizing
role of the oscillatory disjoining pressure in oil-in-water
emulsions which contained surfactant micelles in the aque-
ous phase.

Below we present in more detail the predictions of the
capillary-wave mechanism.

B. Critical Thickness of Quiescent
Emulsion Films

Let us first consider a quiescent emulsion film, say the film
between two drops within a floc or cream. At a given suf-
ficiently small thickness of the film, termed the critical
thickness (92—97, 115), the attractive surface forces pre-
vails and causes growth of the thermally excited capillary
waves. This may lead to either film rupture or transition to
a thinner secondary film. Two modes of film undulation
have been distinguished: symmetric (squeezing, peristaltic)
and antisymmetric (bending) modes; it is the symmetric
mode which is related to the film breakage/transition. The
critical thickness, h = hc, of a film having area πR2 can be
estimated from the equation (94):

in a different manner by Vrij (94), Ivanov et al. (95), and
Malhotra and Wasan (116). It is obvious that Eq. (44) can
be satisfied only for positive ∂Π/∂h. If, in the special case
of van der Waals interaction one is to substitute ∂Π/∂h by
AH/(2πh4), where AH is the Hamaker constant, then from
Eq. (44) it follows that the critical thickness increases with
increase in the film radius R, i.e., the films of larger area
break more easily (at a greater thickness) than those of
smaller area. Note that the effect of surfactant on the tan-
gential mobility of the interface, which involves the surface
elasticity, viscosity, and diffusion, does not affect the form
of Eq. (44), and correspondingly, the critical thickness hc.
The surfactant affects Eq. (44) and hc only indirectly,
through the values of σ and ∂Π/∂h. These conclusions are
valid only for quiescent films, which do not thin during the
development of instability.

When an aqueous film is stabilized by an ionic surfac-
tant, then the stability problem becomes more complicated
owing to the electrostatic interactions between the charged
film surfaces (117). Electrolyte films surrounded by dielec-
tric were initially studied by Felderhof (118), who exam-
ined the stability of an equilibrium infinite plane-parallel
film surrounded by a vacuum. Sche and Fijnaut (119) ex-
tended Felderhof s analysis to account for the effect of sur-
face shear viscosity and surface elasticity. In these studies
the electrostatic (double-layer) component of disjoining
pressure Π was involved in the theory, and a quasistatic ap-
proximation was used to describe the electrostatic interac-
tion (117—119). In other words, it has been assumed that
the ions immediately acquire their equilibrium distribution
for each instantaneous shape of the film. The electric field
has been computed by solving the Poisson - Boltzmann
equation for the respective instantaneous charge configu-
ration. This quasistatic approximation, which neglects the
electrodiffusion fluxes, leads to a counterpart of Eq. (44)
in which the total disjoining pressure Π includes an electro-
static component. The latter leads to ∂Π/∂h < 0 at the equi-
librium state (h = h1 in Fig. 8a) and then Eq. (44) has no
positive root for h = hc; that is, the film should remain sta-
ble for an infinitely long time in agreement with the con-
ventional DLVO theory (3). On the other hand, if
electrolyte is added at sufficiently high concentration, the
double-layer repulsion is suppressed and the liquid films
rupture under the action of the van der Waals force [see Ref.
120 and Eq. (86)].

In reality, aqueous films stabilized with ionic surfactant,
without electrolyte, also rupture, especially at surfactant
concentrations below the cmc. The latter fact cannot be ex-
plained in the framework of the quasistatic approximation
(117—119); this is still an open problem in the theory of
liquid-film stability.
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where j1 is the first zero of the Bessel function j0; as usual,
σ denotes surface tension. Equation (44) has been derived
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C. Critical Distance Between Quiescent
Emulsion Drops

Let us consider two emulsion drops of different radii, R1
and R2, like those depicted in Fig. 7 but without the forma-
tion of a film between them, i.e., R = 0. In this case the gap
between the two drops represents a liquid film of uneven
thickness. The frequently used lubrication approximation
(121) is not applicable to a description of the fluctuation
capillary waves on the drop surfaces because it presumes
infinite interfacial area and does not impose the natural
upper limits on the capillary wavelength, originating from
the finite size of the drops. On the other hand, it is possible
to solve the problem by means of the usual spherical co-
ordinates, locating the co-ordinate origin at the center of
one of the two drops. We consider the case in which effects
of surface electric charge are negligible and the interaction
between the drops (the disjoining pressure) is dominated
by the van der Waals attraction. The critical distance be-
tween the two drops can be determined from a thermody-
namic requirement, viz., the fluctuation of the local
disjoining pressure in the narrowest zone of the gap to be
equal to the fluctuation of the capillary pressure of the
drops. (For shorter distance the fluctuation of the attractive
disjoining pressure will prevail and will initiate film rup-
ture.) This requirement leads to the following equation:

of surfactant on the tangential mobility of the interface,
which involves the surface elasticity, viscosity, and diffu-
sion, does not affect the form of Eq. (45), and correspond-
ingly, the critical distance hc. We found the greatest
eigenvalue numerically. The results for the critical distance
as a function of the drop radius a and the Hamaker constant
AH are shown in Fig. 11; for the interfacial tension we used
the value σ = 30 mN/m. One sees that the critical distance
is of the order of dozens of nanometers and that it increases
with the rise of both AH and a.

Note, however, that if the two drops are not quiescent,
but instead approach each other, the critical distance is in-
fluenced by the hydrodynamic interactions —- see the next
section.

IV. HYDRODYNAMIC INTERACTIONS AND
DROP COALESCENCE

First, we consider the hydrodynamic interactions between
two emulsion drops, which remain spherical when the dis-
tance between them decreases (Sec. IV.A); this is the tran-
sition A→B in Fig. 2. Second, we consider the thinning of
the film formed between two emulsion drops (Sec. IV.B):
this is stage D in Fig. 2. In both cases the effect of surfactant
is taken into account and the critical distance (thickness)
for drop coalescence is quantified.
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Here, ζ is the fluctuation in the drop shape, θ is the polar
angle of the spherical coordinate system, h is the shortest
distance between the two drop surfaces, AH is the Hamaker
constant and

is the mean drop radius. We used the following two bound-
ary conditions: (1) dζ/dθ = 0 at θ = 0, i.e., at the narrowest
region of the gap; and (2) ζ = 0 for θ = π/2, that is, far from
the gap zone. The value h = hc, corresponding to the great-
est eigenvalue of the spectral problem, Eq. (45), gives the
critical distance between the two drops. Note that the effect

Figure 11 Plot of the critical distance between two quiescent
drops, hc, vs the mean drop radius, a, calculated by means of Eq.
(45) for three values of the Hamaker constant AH.
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A. Interaction of Spherical Emulsion Drops

1. Limiting Cases of Low and High Surface
Mobility

The solution to the problem of hydrodynamic interaction
between two rigid spherical particles, approaching each
other across a viscous fluid, was obtained by Taylor (122).
Two spherical emulsion drops of tangentially immobile sur-
faces (due to the presence of dense surfactant adsorption
monolayers) are hydrodynamically equivalent to the two
rigid particles considered by Taylor. The hydrodynamic in-
teraction is due to the dissipation of kinetic energy when
the liquid is expelled from the gap between the two spheres.
The resulting friction force decreases the velocity of the
two spherical drops proportionally to the decrease in the
surface-to-surface distance h in accordance with the Taylor
(122) equation:

where, as usual, h is the closest surface-to-surface distance
between the two drops, and ηin and ηout are the viscosities
of the liquids inside and outside the drops. In the limiting
case of solid particles one has ηin�∞, ξ→0 and then Eq.
(49) reduces to the Taylor equation, Eq. (47). Note that in
the case of a close approach of two drops (h→0, ξp 1) the
velocity Vp is proportional to h1/2. This implies that the two
drops can come into contact (h = 0) in a finite period of
time (τ < ∞) under the action of a given force, F, because
the integral expressing the lifetime (97):
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Here, a is the mean drop radius denned by Eq. (46), F is
the external force exerted on each drop, and Fs is the sur-
face force originating from the intermolecular interactions
between the two drops across the liquid medium. When the
range of the latter interactions is much smaller than the drop
radii, then Fs can be calculated by means of the Derjaguin
approximation (3, 4):

where, as before, Π is the disjoining pressure.
If the surface of an emulsion drop is mobile, it can trans-

mit the motion of the outer fluid to the fluid within the drop.
This leads to a circulation of the fluid inside the drop and
influences the dissipation of energy in the system. The
problem about the approach of two nondeformed spherical
drops or bubbles in the absence of surfactants has been in-
vestigated by many authors (123-132). A number of solu-
tions, generalizing the Taylor equation [Eq. (47)], have
been obtained. In particular, the velocity of central ap-
proach of two spherical drops in pure liquid, Vp, is related
to the Taylor velocity VTa, defined by means of a Padé-type
expression derived by Davis et al. (131):

(with V = Vp) is convergent for hc = 0; hin is the surface-
to-surface distance at the initial moment t = 0. In contrast,
in the case of immobile interfaces (ξ ` 1) Eq. (47) gives
VTa ? h and τ→∞ for hc→0. Moreover, the counterbal-
ancing of the external force by the surface force, i.e., F - Fs
= 0, implies VTa = V = 0 and τ→∞ (equilibrium state) irre-
spective of whether the drop surfaces are tangentially mo-
bile or immobile.

It has been established both theoretically and experimen-
tally (133, 134) that, if the surfactant is dissolved only in
the drop phase, the film formed between two emulsion
drops (Fig. 2D) thins just as if surfactant is missing. Like-
wise, one can use Eq. (49) to estimate the velocity of ap-
proach of two emulsion drops when surfactant is contained
only in the drop phase (2).

2. Effects of Surface Elasticity, Viscosity, and
Diffusivity

When surfactant is present in the continuous phase at not
too high concentration, then the surfactant adsorption
monolayers, covering the emulsion drops, are tangentially
mobile, rather than immobile. The adsorbed surfactant can
be dragged along by the fluid flow in the gap between two
colliding drops, thus affecting the hydrodynamic interac-
tion between them. The appearance of gradients of surfac-
tant adsorption are opposed by the Gibbs elasticity, surface
viscosity, and surface and bulk diffusion. Below, we con-
sider the role of the enumerated factors on the velocity of
approach of two emulsion drops.

If the driving force F (say, the Brownian or the buoyancy
force) is small compared to the capillary pressure of the

Copyright © 2001 by Marcel Dekker, Inc.



droplets, the deformation of two spherical droplets upon
collision will be only a small perturbation in the zone of
contact. The film thickness and the pressure within the gap
can then be presented as a sum of a nonperturbed part and
a small perturbation. Solving the resulting hydrodynamic
problem for low (negligible) interfacial viscosity, an analyt-
ical formula for the velocity of drop approaching, V = -
dh/dt, can be derived (121):

procedure for computation of Φv has been developed (137,
138). Table 3 contains asymptotic expressions for Φv. A
general property of Φv is
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where a is the mean drop radius denned by Eq. (46), and
VTa is the Taylor velocity, Eq. (47); the other parameters
are defined as follows:

As usual, the superscript (e) denotes that the respective
quantity should be estimated for the equilibrium state; the
dimensionless parameter b accounts for the effect of bulk
diffusion, whereas hs has a dimension of length and takes
into account the effect of surface diffusion. In the limiting
case of very large Gibbs elasticity EG (tangentially immo-
bile interface) the parameter d tends to zero and then Eq.
(52) yields V→VTa, as should be expected (121, 135, 136).

If the effect of surface viscosity is taken into account,
then Eq. (52) can be expressed in the generalized form
(137, 138):

where Φv is termed the mobility factor (function); the di-
mensionless parameter Sv takes into account the effect of
surface viscosity:

Here, ηsh and ηdil respectively, the interfacial shear and di-
latational viscosities. In fact, Eq. (52) gives an analytical
expression for the mobility factor Φv in the case when Sv
` 1, i.e., the effect of surface viscosity can be neglected.
However, if the effect of surface viscosity is essential, there
is no analytical expression for Φv; in this case a numerical

It is important to note that the surface viscosity parameter
Sv appears only in the combinations Svhs/h = ηsD1s/
(hEGa) and Svb (see Table 3). In view of Eqs (53)-(55), it
then follows that the surface viscosity can influence the mo-
bility factor Φv only if either the Gibbs elasticity, EG, or the
drop radius, a, or the gap width, h, are small enough.

To illustrate the dependence of the mobility function Φv
on the concentration of surfactant in the continuous phase,
in Fig. 12 we present theoretical curves, calculated in Ref.
138 for the nonionic surfactant Triton X-100, for the ionic
surfactant SDS ( + 0.1 M NaCl) and for the protein bovine
serum albumin (BSA). The parameter values, used to cal-
culated the curves in Fig. 12, are listed in Table 4; Γ∞ and
K are parameters of the Langmuir adsorption isotherm used
to describe the dependence of surfactant adsorption, surface
tension, and Gibbs elasticity on the surfactant concentration
(see Tables 1 and 2). As before, we have used the approxi-
mation D1s ≈ D1 (surface diffusivity equal to the bulk dif-
fusivity). The surfactant concentration in Fig. 12 is scaled
with the reference concentration c0, which is also given in
Table 4; for Triton X-100 and SDS + 0.1 M NaCl, c0 is cho-
sen to coincide with the cmc. The driving force, F, was
taken to be the buoyancy force for dodecane drops in water.
The surface force Fs is identified with the van der Waals
attraction; the Hamaker function AH(h) was calculated by
means of Eq. (86) (see below). The mean drop radius in
Fig. 12 is a = 20 /µm. As seen in the figure, for such small
drops Φv ≈ 1 for Triton X-100 and BSA, i.e., the drop sur-
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faces turn out to be tangentially immobile in the whole con-
centration range investigated. On the other hand, Φv be-
comes considerably greater than unity for the lowest SDS
concentrations, which indicates increased mobility of the
drop surfaces.

3. Formation of Pimple

Let us consider two spherical emulsion drops approaching
each other, which interact through the van der Waals attrac-
tive surface force. Sooner or later interfacial deformation
will occur in the zone of drop-drop contact. The calcula-
tions (138) show that, if the drop radius a is greater than 80
µm, the drop interfaces bend inwards (under the action of
the hydrodynamic pressure) and a dimple is formed in the
contact zone; soon the dimple transforms into an almost
plane-parallel film (Fig. 2D). In contrast, if the drop radius

a is less than 80 µm, then at a given surface-to-surface dis-
tance h = hp the drop surface in the contact zone bends out-
wards and a pimple forms due to the van der Waals
attraction (see the inset in Fig. 13). Correspondingly, hp is
called the pimpling distance. Since the size of the drops in
an emulsion is usually markedly below 80 µm, we will con-
sider here only the formation of a pimple.

The formation of pimples was discovered by Yanitsios
and Davis (139) in computer calculations for emulsion
drops from pure liquids, without any surfactant. Next, by
means of numerical calculations, Cristini et al. (140) estab-
lished the formation of a pimple for emulsion drops cov-
ered with insoluble surfactant in the case of negligible
surface diffusion; their computations showed that rapid co-
alescence took place for h < hp. A complete treatment of
the problem for the formation of pimples was given in Ref.
138, where the effects of surface and bulk diffusion of sur-
factant, as well as the surface elasticity and viscosity, were
taken into account, and analytical expressions were derived.

The origin of pimple formation is the fact that the van
der Waals disjoining pressure, Π ? 1/h3, grows faster than
the hydrodynamic pressure with decrease in h. For a certain
distance, h = hp, Π counterbalances the hydrodynamic pres-
sure (138):
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Figure 12 Theoretical dependence of the mobility factor Φv, on
the surfactant concentration c1, calculated in Ref. 138 for the non-
ionic surfactant Triton X-100, ionic surfactant SDS + 0.1 M NaCl,
and the protein BSA; the curves for Triton X-100 and BSA coin-
cide. The mean drop radius is a = 20 µm and the film thickness is
h ≈ 10 nm; the other parameters values are listed in Table 4.

where Φp is the mobility factor for the pressure. Further,
for a shorter distance between the drops, h < hp, the pimples
spontaneously grow until the drop surfaces touch each
other and the drops coalesce. The pimple formation at h =
hp can be interpreted as an onset of instability without fluc-
tuations.

Analytical asymptotic expressions for the pressure mo-
bility factor, Φp, can be found in Table 3. In general, Φp is
to be calculated numerically. In the case of tangentially im-
mobile surfaces of the drops Eq. (59) yields a very simple
formula for the pimpling distance (138):
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In the more complicated case of mobile drop surfaces Eq.
(59) has to be solved numerically. Figure 13 shows calcu-
lated curves for the dependence of hp versus the surfactant
concentration; the parameter values used are the same as
for Fig. 12 (see Table 4). Since the surfaces of the drops
with BSA and Triton X-100 are tangentially immobile, the
respective pimpling distance is practically constant (inde-
pendent of surfactant concentration) and given by Eq. (60).
The effect of surface mobility shows up for the emulsions
with SDS + 0.1 M NaCl, for which the pimpling distance
hp is greater (Fig. 13). These calculations demonstrate that
hp is typically of the order of 10 nm.

If the pimpling distance is greater than the critical dis-
tance, hp > hc, then the pimpling will be the reason for co-
alescence. On the other hand, if hc > hp, then the
coalescence will be caused by the fluctuation capillary
waves (see the next subsection).

4. Transitional and Critical Distance

As already mentioned, when two emulsion drops approach
each other, the attractive surface forces promote the growth
of fluctuation capillary waves in the contact zone. At a
given, sufficiently small surface-to-surface distance, called
the transitional distance, ht, the waves with a given length
(usually the longest one) begin to grow; this is a transition

from stability to instability. During the growth of the waves
the gap width continues to decrease, which leads to desta-
bilization and growth of waves with other lengths. Finally,
the surfaces of the two drops touch each other owing to the
enhanced interfacial undulations, and coalescence takes
place. The latter act corresponds to a given mean surface-
to-surface distance, called the critical thickness, hc. The
difference between the transitional and critical distance, ht
> hc, is due to the fact that during the growth of the capil-
lary waves the average film thickness continues to de-
crease, insofar as the drops are moving against each other
driven by the force F —- Fs. In the simpler case of immo-
bile drops (F —- Fs = 0), considered in Sec. III.C, one has
ht = hc.

A general equation for determining ht, which takes into
account the effect of surface mobility, has been reported in
Ref. 136:
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Figure 13 Calculated dependence of the pimple thickness, hp, on
the surfactant concentration, c1, for emulsion films formed from
aqueous solutions of SDS + 0.1 M NaCl, Triton X-100, and BSA;
the parameters values used are listed in Table 4. The inset illus-
trates the shape of the drop surfaces in the zone of contact.

where

The function Ψ(d) accounts for the effect of the surface mo-
bility. For large interfacial elasticity one has d →0, see Eq.
(53); then Ψ→1 and Eq. (61) acquires a simpler form, cor-
responding to drops of tangentially immobile interfaces. In
the other limit, small interfacial elasticity, one has d p 1
and in such a case Ψ ? 1/1n d, i.e., Ψ decreases with the in-
crease in d, that is, with the decrease in EG. A numerical so-
lution to this problem is reported in Ref. 24. The effect of
the interfacial viscosity on the transitional distance, which
is neglected in Eq. (61), is examined in Ref. 141. It is estab-
lished therein that the critical distance, hc, can be with in
about 10% smaller than ht.

The dependence of the transitional distance ht on the sur-
factant concentration, calculated with the help of Eq. (61),
is shown in Fig. 14; the three curves correspond to three
fixed values of the mean drop radius a. The calculations are
carried out for the system with SDS + 0.1 M NaCl in the
aqueous phase (see Table 4); the oil phase is dodecane. One
sees that the increase in surfactant concentration leads to a
decrease in transitional thickness, which corresponds to a
greater stability of the emulsion against coalescence. Phys-
ically this is related to the damping of the fluctuation cap-
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illary waves by the adsorbed surfactant. Moreover, the tran-
sitional thickness for two approaching drops increases with
the decrease in drop radius a (Fig. 14), which is exactly the
opposite to the tendency for quiescent drops in Fig. 11 (we
recall that ht = hc for quiescent drops). The difference can
be attributed to the strong dependence of the buoyancy
force F on the drop radius a (such an effect is missing for
the quiescent drops).

The comparison between Figs 13 and 14 shows that for
the emulsion with SDS + 0.1 M NaCl one has ht > hp. In
other words, the theory predicts that in this emulsion the
drops will coalesce due to the fluctuation capillary waves,
rather than owing to the pimpling.

If the coalescence is promoted by the van der Waals at-
tractive surface force, from Eq. (61) one can deduce asymp-
totic expressions for ht, corresponding to tangentially
immobile drop surfaces (Ψ = 1) (136):

B. Interaction Between Deforming
Emulsion Drops

1. Drops of Tangentially Immobile Surfaces

In this subsection we consider the case in which a liquid
film is formed in the zone of contact between two emulsion
drops (see Fig. 7). Such a configuration appears between
drops in floes and in concentrated emulsions, including
creams.

In a first approximation, one can assume that the viscous
dissipation of kinetic energy happens mostly in the thin liq-
uid film intervening between two drops. (In reality, some
energy dissipation happens also in the transition zone be-
tween the film and the bulk continuous phase.) If the drop
interfaces are tangentially immobile (owing to adsorbed
surfactant), then the velocity of approach of the two drops
can be estimated by meanss of the Reynolds formula for
the velocity of approach of two parallel solid disks of radius
R, equal to the film radius (142):
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Figure 14 Dependence of the transitional distance between two
drops, ht, on the surfactant concentration, c1, calculated with use
of Eq. (61) for three values of the mean drop radius a.

where Fa = 12.66(aσ2AH)1/3. In particular, if F is the buoy-
ancy force, then F ? a3 and for small droplets (F ` Fa)
one obtains ht ? 1/a, i.e., the critical thickness markedly
increases with the decrease in droplet radius.

As usual, here h is the film thickness, and Ftot is the total
force exerted on a drop (2):

As before, F is the applied external force (buoyancy, cen-
trifugal force, Brownian force, etc.); Fs is the surface force
of intermolecular origin, which for deformable drops can be
expressed in the form (2, 143):

where

is the interaction free energy per unit area of a plane-paral-
lel liquid film, and W is the drop - drop interaction energy
due to surface forces, which is a sum of contributions from
the planar film and the transition zone film - bulk liquid;
for R = 0, Eq. (67) reduces to Eq. (48). Finally, Fdef is a
force originating from the deformation of the drop inter-
faces (2):
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where Wdil is the work of interfacial dilatation (143—145), Equation (75) shows that for h ≤ hinv the velocity V be-
comes considerably smaller than VTa.

2. Effect of Surface Mobility

When the surfactant is soluble only in the continuous phase
(we will call such a system “System I”, see Fig. 15), turns
out that the respective rate of film thinning V1 is affected by
the surface mobility mainly through the Gibbs elasticity
EG, just as it is for foam films (97, 121):
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and Wbend is the work of interfacial bending (146):

where B0 = -4kcH0 is the interfacial bending moment; H0
is the so-called spontaneous curvature, and kc is the inter-
facial curvature elastic modulus.

Initially, the two approaching drops are spherical. The
deformation in the zone of contact begins when the surface-
to-surface distance reaches a certain threshold value, called
the inversion thickness, hinv. One can estimate the inver-
sion thickness from the simple expression hinv = F/(2πσ)
(see, e.g., Refs 98 and 121). The generalized form of the
latter equation, accounting for the contribution of the sur-
face forces, reads (136):

The inversion thickness can be determined by solving Eq.
(72) numerically.

A generalized expression for the velocity V = -dh/dt,
which takes into account the energy dissipation in both film
and the transition zone film - bulk liquid, has been derived
in Refs 2 and 147:

where the Taylor velocity, VTa, and the Reynolds velocity,
VRe, are defined by means of Eqs (47) and (65). For R→0
(nondeformed spherical drops), Eq. (73) reduces to V =
VTa. On the other hand, for h→0 one has 1/VTa` 1/VRe,
and then Eq. (73) yields V→VRe. Substituting Eqs (47) and
(65), and assuming Fp (Fs + Fdef) one can bring Eq. (73)
into the form (147):

One sees that V→ VTa for R2/(ha)` 1. If the external force
F is predominant, then R2 ≈ aF/(2πσ), hinv ≈ F/(2πσ) and
it follows that R2/a ≈ hinv (97, 135); the substitution of the
latter equation into Eq. (74) yields:

Here, εf is the so called foam parameter, and η1 is the vis-
cosity in the surfactant-containing phase (Liquid 1 in Fig.
15); the influence of the transition zone film - bulk liquid
is not accounted for in Eq. (76). Note that the bulk and sur-
face diffusion fluxes (see the terms with D1s and D1 in the
latter equation), which tend to damp the surface tension
gradients and to restore the uniformity of the adsorption
monolayers, accelerate the film thinning (Fig. 1). More-
over, since D1s in Eq. (76) is divided by the film thickness
h, the effect of surface diffusion dominates that of bulk dif-
fusion for small values of the film thickness. On the other
hand, the Gibbs elasticity EG (the Marangoni effect) decel-
erates the thinning. Equation (76) predicts that the rate of

Figure 15 Two complementary types of emulsion system obtained
by a mere exchange of the continuous phase with the disperse
phase. The surfactant is assumed to be soluble only in Liquid 1.
(a) Liquid 2 is the disperse phase; (b) Liquid 2 is the continuous
phase.
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thinning is not affected by the circulation of liquid in the
droplets, i.e., System I really behaves as a foam system.

It was established theoretically (97, 133) that when the
surfactant is dissolved in the drop phase (System II in Fig.
15) it remains uniformly distributed throughout the drop
surface during film thinning, and interfacial tension gradi-
ents do not appear. This is the result of a powerful supply
of surfactant, which is driven by convective diffusion from
the bulk of the drops toward their surfaces. For that reason,
the drainage of the film surfaces is not opposed by surface-
tension gradients, and the rate of film thinning, VII, is the
same as in the case of pure liquid phases (97, 133):

becomes important for System I. Equation (76) can then be
presented in a more general form (137).
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Here, ηe is called the emulsion parameter, δ is the thickness
of the hydrodynamic boundary layer inside the drops, and
ρ2 and η2 are the mass density and dynamic viscosity of
Liquid 2, which does not contain dissolved surfactant. The
validity of Eq. (77) was confirmed experimentally (134).

The only difference between the two systems in Fig. 15
is the exchange of the continuous and drop phases. Assume
for simplicity that VRe is the same for both systems. In ad-
dition, usually εf ≈ 0.1 and εe ≈ 10-2 to 10-3. From Eqs (76)
and (77) one then obtains (97, 121, 133):

Hence, the rate of film thinning in System II is much
greater than that in System I. Therefore, the location of the
surfactant has a dramatic effect on the thinning rate and,
thereby, on the drop lifetime. Note also that the interfacial
tension in both systems is the same. Hence, the mere phase
inversion of an emulsion, from Liquid 1-in-Liquid 2 to Liq-
uid 2-in-Liquid 1 (Fig. 15), could change the emulsion life-
time by orders of magnitude. As discussed in Sec. V, the
situation with interaction in the Taylor regime (between
spherical, nondeformed drops) is similar. These facts are
closely related to the explanation of the Bancroft rule for
the stability of emulsions (see Sec. V) and the process of
chemical demulsification (1).

Equations (76) and (77) do not take into account the hy-
drodynamic interactions across the transition zone around
the film, which can be essential if the film radius R is rela-
tively small. In the latter case the effect of surface viscosity

where Ωv is a mobility function. In Ref. 137 a general, but
voluminous, analytical expression for Ωv is derived in the
form of an infinite series expansion; it accounts for the ef-
fects of surface elasticity, surface viscosity, and bulk and
surface diffusion. In some special cases this infinite series
can be summed up and closed expressions for Ωv can be
obtained. Such is the case when the effect of the surface
viscosity is negligible, Sv→0; the respective expression for
Ωv reads (137):

where the dimensionless parameter NR = R/(ah)1/2 accounts
for the effect of the film radius. In the case of emulsion
drops NR ≡ however, if experiments with emulsion films
are performed in the experimental cell of Scheludko and
Exerowa (148, 149), which allows independent control of
R, then one usually has NRp 1. (The original experiments
in Refs 148 and 149 have been carried out with foam films,
but a similar technique can be appllied to investigate emul-
sion films, see, e.g., Refs 91 and 150—158.) In the limit of
large plane-parallel film, NR p 1, Eq. (80) reduces to the
result of Radoev et al. (159): V1/VRe = 1 + b + hs/h (effect
of the transition zone negligible). For insoluble surfactants
the parameter b in Eq. (80) must be set equal to zero.

Under certain experimental conditions, like those in Ref.
60, the motion of surfactant along an oil-water interface
represents a flow of a two-dimensional incompressible vis-
cous fluid. In such a case Eq. (79) acquires the following
specific form (137):

Equation (81) is a truncated power expansion for Sv p 1.
In the limit of tangentially immobile interfaces (Sv → ∞)
Eq. (81) reduces to Eq. (73).
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To illustrate the effects of various factors on the velocity
of approach of two deforming emulsion drops (Fig. 15a)
we used the general expression from Ref. 137 (the infinite
series expansion) to calculate the mobility factor Ωv; the
results are shown in Figs 16 and 17. First of all, in Fig. 16
we illustrate the effects of bulk and surface diffusion. For
that reason Ωv ≡ V1/VRe is plotted versus the parameter b,
related to the bulk diffusivity, for various values of hs/h; hs
is related to the surface diffusivity, see Eq. (54). If the hy-
drodynamic interaction were operative only in the film,
then one would obtain V1/VRe ≥ 1. However, all calculated
values of V1/VRe are less than 0.51 (Fig. 16); this fact is ev-
idence for a significant effect of the hydrodynamic interac-
tions in the transition zone around the film. Moreover, in
Fig. 16 one sees that for b > 10 the mobility factor Ωv is in-
dependent of the surface diffusivity. On the other hand, for
b < 10 a considerable effect of surface diffusivity shows
up: the greater the surface diffusivity effect, hs/h, the
greater the interfacial mobility factor Ωv. For the upper
curve in Fig. 16 the interfacial mobility is determined
mostly by the effect of surface viscosity, Sv, which is set
equal to unity for all curves in the figure.

To illustrate the effect of surface viscosity, Sv, in Fig. 17
we have plotted the mobility factor Ωv = V1/VRe versus b
for three different values of Sv. For the higher surface vis-
cosities, Sv = 1 and 5, and the mobility factor is V1/VRe <
1, which again indicates a strong hydrodynamic interaction
in the transition zone around the film. For the lowest sur-
face viscosity, Sv = 0.1, the mobility factor is sensitive to
the effect of bulk diffusion, characterized by b: for b > 3

we have V1/VRe > 1, i.e., we observe a considerable rise in
the interfacial mobility (Fig. 17).

3. Critical Thickness of the Film Between Two
Deforming Drops

As already mentioned, the transition from stability to insta-
bility occurs when the thickness of the gap between two
colliding emulsion drops decreases down to a “transitional”
thickness ht. For ht > h > hc the film continues to thin,
while the instabilities grow, until the film ruptures at the
critical thickness h = hc.

Equation (61) determines the transitional distance be-
tween two spherical emulsion drops. An analog of this
equation for the case of two deformed drops (Fig. 15a) has
been obtained in the form of a transcendental equation (2,
136):
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Figure 16 Effect of the surface diffusion parameter, hs/h, on the
variation of the mobility factor, Ωv = V1/VRe, with the bulk dif-
fusion parameter, b, for fixed Sv and NR = 1.

Figure 17 Effect of the surface viscosity parameter, Sv, on the
variation of the mobility factor, Ωv = V1/VRe, with the bulk dif-
fusion parameter, b, for fixed hs/h = 1 and NR = 1.

Equation (82) shows that the disjoining pressure signifi-
cantly influences the transitional thickness ht. The effect of
surface mobility is characterized by the parameter d, see
Eq. (53); in particular, d = 0 for tangentially immobile in-
terfaces. Equation (82) is valid for ∏ < 2σ/a, i.e., when the
film thins and ruptures before reaching its equilibrium
thickness, corresponding to ∏ = 2σ/a [cf. Eqs (42), (43),
and (59)].

The calculation of the transitional thickness ht is a pre-
requisite for computing the critical thickness hc, which can
be obtained as a solution to the equation (95, 96):
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where I(ht,hc) represents the following function:

interaction, we used an expression proposed by Russel et al.
(160):
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In the special case of tangentially immobile interfaces and
large film (negligible effect of the transition zone) one has
Ωv(h) = 1, and the integration in Eq. (84) can be carried out
(95):

Note that Eqs (82)-(85) hold not only for an emulsion film
formed between two oil drops, but also for a foam film in-
tervening between two gas bubbles. In Fig. 18 we compare
the prediction of Eqs (82)-(84) with experimental data for
hc versus R, obtained by Manev et al. (120) for foam films
formed from an aqueous solution of 0.43 mM SDS + 0.1 M
NaCl. The mobility factor Ωv(h) was calculated by using
the exact expression (the infinite series) from Ref. 137. Pa-
rameters such as ω, EG, Γ1 and ∂Γ1/∂c1, see Eqs (53)-(55),
are obtained from the experimental fit in Ref. 17, in the
same way as the numerical data in Fig. 5 have been ob-
tained (see Sec. II.A.2). The disjoining pressure was attrib-
uted to the van der Waals attraction: Π = -AH/(6πh3). To
account for the effect of the electromagnetic retardation on
the dispersion

Figure 18 Critical thickness, hc, vs radius, R, of a foam film
formed from aqueous solution of 0.43 mM SDS + 0.1 M NaCl:
comparison between experimental points, measured by Manev et
al. (120), with our theoretical model based on Eqs. (82)-(87) (the
solid line) and the model by Malhotra and Wasan (116) (the
dashed line).

Here, hP = 6.63 × 10-34 J.s is the Planck constant, v ≈ 3.0 ×
1015 Hz is the main electronic absorption frequency, and n0
and nw are the refractive indices of the nonaqueous and
aqueous phases; for a foam film n0 = 1 and nw = 1.333.
The dimensionless thickness h is defined by the expression:

where c = 3.0 × 1010 cm/s is the speed of light. For small
thickness AH, as given by Eqs (86) and (87), is constant,
whereas for large thickness h one obtains AH ? h-1. The
solid line in Fig. 18 was calculated with the help of Eqs
(82)-(87) without using any adjustable parameters; one sees
that there is an excellent agreement between this theoretical
model and the experiment.

The dot-dashed line in Fig. 18 shows the prediction of
the theoretical model by Malhotra and Wasan (116). Our
calculations showed that for the specific surfactant and salt
concentrations (0.43 mM SDS + 0.1 M NaCl) the interfaces
are almost tangentially immobile. Moreover, in these ex-
periments the film radius R is sufficiently large, which al-
lows one to neglect effects of the transition zone, i.e., to
ignore the last two terms in Eq. (73). Consequently, the dif-
ference between the model from Ref. 116 and the experi-
mental data (Fig. 18) cannot be attributed to the latter two
effects (interfacial mobility and transition zone), which
have not been taken into account in Ref. 116. The main rea-
sons for the difference between the output of Ref. 116 and
the experiment are that (1) these authors have, in fact, cal-
culated ht, and identified it with hc; and (2) a constant value
of AH has been used, instead of Eq. (86), i.e., the electro-
magnetic retardation effect has been neglected. It is inter-
esting to note that the retardation effect turns out to be
important in the experimental range of critical thicknesses,
in this specific case: 25 nm < hc < 50 nm.

V. INTERPRETATION OF THE BANCROFT RULE

A simple rule connecting the emulsion stability with the
surfactant properties was formulated by Bancroft (161).
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The Bancroft rule states that “in order to have a stable
emulsion the surfactant must be soluble in the continuous
phase.” Most of the emulsion systems obey this rule, but
some exclusions have also been found (162). The results
on drop-drop interactions, presented in Sec. IV, allow one
to give a semiquantitative interpretation of the rule and the
exclusions (1, 2, 163).

According to Davies and Rideal (6), both types of emul-
sions (water-in-oil and oil-in-water) are formed during the
homogenization process, but only the one with lower coa-
lescence rate survives. If the initial drop concentration for
the two emulsions (Systems I and II, see Fig. 15) is the
same, the corresponding coalescence rates for the two
emulsions will be (approximately) proportional to the re-
spective velocities of film thinning, VI and VII (163):

ior in this case is controlled mostly by the hydrodynamic
factors, i.e., the factors related to the kinetic stability.

The disjoining pressure, Π, can substantially change, and
even reverse, the behavior of the system if it is comparable
by magnitude with the capillary pressure, 2σ/a. For exam-
ple, if (2σ/a —- ΠII) → 0 at a finite value of 2σ/a —- ΠI,
then the ratio in Eq. (89) may become much larger than
unity, which means that System II will become thermody-
namically stable. This fact can explain some exclusions
from the Bancroft rule, like that established by Binks (162).
Moreover, a large stabilizing disjoining pressure is opera-
tive in emulsions with a high volume fraction of the dis-
perse phase, above 95% in some cases (164).

The Gibbs elasticity, EG, favors the formation of emul-
sion I (Fig. 15a), because it slows down the film thinning.
On the other hand, increased surface diffusivity, D1,S, de-
creases this effect, because it helps the interfacial-tension
gradients to relax, thus facilitating the formation of emul-
sion II.

The film radius, R, increases, whereas the capillary pres-
sure, 2σ/a, decreases with the rise in drop radius, a. There-
fore, larger drops will tend to form emulsion I, although the
effect is not very pronounced, see Eq. (89). The difference
between the critical thicknesses of the two emulsions af-
fects only slightly the rate ratio in Eq. (89), although the
value of hc itself is important.

The viscosity of the surfactant-containing phase, η1,
does not appear in Eq. (89); there is only a weak depend-
ence on η2. This fact is consistent with the experimental
findings about a negligible effect of viscosity (see Ref. 6, p.
381 therein).

The interfacial tension, σ, affects directly the rate ratio in
Eq. (89) through the capillary pressure, 2σ/a. The addition
of electrolyte would affect mostly the electrostatic compo-
nent of the disjoining pressure (see Fig. 8a), which is sup-
pressed by the electrolyte; the latter has a destabilizing
effect on O/W emulsions. In the case of ionic surfactant so-
lutions the addition of electrolyte rises the surfactant ad-
sorption and the Gibbs elasticity (see Fig. 5), which favors
the stability of emulsion I.

Surface-active additives (such as cosurfactants, demul-
sifiers, etc.) may affect the emulsifier partitioning between
the phases and its adsorption, thereby changing the Gibbs
elasticity and the interfacial tension. The surface-active ad-
ditive may change also the surface charge (mainly through
increasing the spacing among the emulsifier ionic head-
groups), thus decreasing the electrostatic disjoining pres-
sure and favoring the W/O emulsion. Polymeric surfactants
and adsorbed proteins increase the steric repulsion between
the film surfaces; they may favor either of the emulsions
O/W or W/O, depending on their conformation at the in-
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A. Case of Deforming Drops

In the case of deforming drops, using Eqs (65), (76), and
(77), one can represent Eq. (88) in the form (1, 163):

where hc,I and hc,II denote the critical thickness of film
rupture for the two emulsion systems in Fig. 15; ΠI and ΠII
denote the disjoining pressure of the respective films. To
obtain Eq. (89) we have also used the estimate Ftot ≈ π
(2σ/a - Π)R2 (see Ref. 149). The product of the first three
multipliers on the right-hand side of Eq. (89), which are re-
lated to the hydrodynamic stability, is 8 × 10-5 dyn2/3cin-1/3

for typical parameter values (1). The last multiplier in Eq.
(89) accounts for the thermodynamic stability of the two
types of emulsion film. Many conclusions regarding the
type of emulsion formed can be drawn from Eq. (89) (1,
62, 163).

In thick films the disjoining pressures, ΠI and ΠII, are
zero, and then the ratio in Eq. (89) will be very small. Con-
sequently, emulsion I (surfactant soluble in the continuous
phase) will coalesce much more slowly than emulsion II;
hence, emulsion I will survive. Thus, we obtain an expla-
nation of the empirical Bancroft rule. The emulsion behav-
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terface and their surface activity.
The temperature affects strongly both the solubility and

the surface activity of nonionic surfactants (165). It is well
known that at higher temperatures nonionic surfactants be-
come more oil soluble, which favors the W/O emulsion.
These effects may change the type of emulsion formed at
the phase-inversion temperature (166). The temperature ef-
fect has numerous implications, two of them being the
change in the Gibbs elasticity, EG, and the interfacial ten-
sion, σ.

B. Case of Spherical Drops

Equation (89) was obtained for deforming emulsion drops,
i.e., for drops which can approach each other at a surface-
to-surface distance less than the inversion thickness hinv,
see Eq. (72). Another possibility is the drops to remain
spherical during their collision, up to their eventual coales-
cence at h = hc; in such a case the expressions for VI and
VII, which are to be substituted in Eq. (88), differ from Eqs
(76) and (77).

Let us first consider the case of System II (surfactant in-
side the drops, Fig. 15b) in which case the two drops ap-
proach each other like drops from pure liquid phases (if
only the surface viscosity effect is negligible). Therefore, to
estimate the velocity of approach of such two aqueous
droplets one can use the following approximate expression,
which directly follows from Eq. (49) for ξp 1:

where ≡ d/h; see Eqs (53)-(55) for the definitions of d, b,
and hs. In the case of large surface (Gibbs) elasticity, EGp
1, one has ′ ` 1; hence, one can expand the logarithm in
Eq. (91) to obtain (2):
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(For the system from Fig. 15b one is to set ηout = η2 and
ηin = η1.) On the other hand, the velocity V1 of droplet ap-
proach in System I can be expressed by means of Eq. (52).
Note that the Taylor velocities for Systems I and II, V(I)

Ta
and V(II)

Ta, are different because of differences in viscosity
and droplet-droplet interaction, see Eq. (47). By combining
Eqs (47), (52), (88), and (90) we then arrive at the follow-
ing criterion for formation of emulsions of type I or II (2):

Here, we have substituted hc for h, which is fulfilled at the
moment of coalescence. For typical emulsion systems one
has a p hc, and then Eq.(92) yields Rate I/Rate II ` 1;
therefore, System I (with surfactant in the continuous
phase, Fig. 15a) will survive. This prediction of Eq. (92)
for spherical drops is analogous to the conclusion from Eq.
(89) for deformable drops. Both these predictions essen-
tially coincide with the Bancroft rule and are valid for cases
in which the hydrodynamic stability factors prevail over the
thermodynamic ones. The latter become significant close
to the equilibrium state, Fs ≈ F, and could bring about ex-
clusions from the Bancroft rule, especially when (F —-
Fs)II → 0. The following conclusions, more specific for
the case of spherical drops, can be also drawn from Eqs.
(91) and (92).

For larger droplets (larger a) the transitional distance ht
(and the critical distance hc as well) is smaller (see Fig. 14).
It then follows from Eq. (91) that the difference between
the coalescence rates in Systems I and II will become larger
(2). On the contrary, the difference between Rates I and II
decreases with the reduction in droplet size a, which is ac-
companied by an increase in the critical thickness hc. Note
that this effect of a cannot be derived from the criterion for
deforming drops, Eq. (89).

The effect of the bulk viscosity is not explicitly present
in Eq. (92), although there could be some weak implicit de-
pendence through the parameters d and b [see Eqs (53) and
(55)]. This conclusion agrees with the experimental obser-
vations about a very weak dependence of the volume frac-
tion of phase inversion on the viscosity of the continuous
phase (6).

The increase in bulk and surface diffusivities, D1 and
D1s, which tend to damp the surface-tension gradients,
leads to an increase in the parameters b and d, which de-
creases the difference between Rates I and II [see Eqs (53),
(55), and (92)]. In contrast, the increase in the Gibbs elas-
ticity, EG, leads to a decrease in d and thus favors the sur-
vival of System I. These are the same tendencies as for
deforming drops (Sec. V. A). In the limit of tangentially im-
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mobile interfaces (EG → ∞) one has d = 0 and b = 0 and the
criterion, Eq. (92), further simplifies (2):

may significantly alter the trend of the phenomenon.

VI. KINETICS OF COAGULATION IN
EMULSIONS

A. Types of Coagulation in Emulsions

The coagulation in an emulsion is a process in which the
separate emulsion drops merge to form larger drops (coa-
lescence) and/or assemble into flocs (flocculation), see Fig.
2. If the films intervening between the drops in a floc are
unstable, their breakage is equivalent to coalescence, see
step D→C in Fig. 2. In other words, the coagulation in an
emulsion includes flocculation and coalescence, which
could occur as parallel or consecutive processes.

Various experimental methods for monitoring the kinet-
ics of coagulation in emulsions have been developed, such
as the electroacoustic method (167), direct video-enhanced
microscopic investigation (168), and ultrasonic attenuation
spectroscopy (169).

To a great extent the occurrence of coagulation is deter-
mined by the energy, W(R, h), of the interaction between
two drops. Equation (67), which defines W(R, h), can be
applied to any type of surface force (irrespective of its
physical origin) if only the range of action of this force is
much smaller than the drop radius a. In Ref. 2 one can find
theoretical expressions for the components of W stemming
from various surface forces: electrostatic, van der Waals,
ionic, correlations, hydration repulsion, protrusion and
steric interactions, oscillatory structural forces, etc.

If the two drops remain spherical during their interaction
(i.e., there is no film in the contact zone and consequently
R = 0), then W depends only on a single parameter, W =
W(h); as usual, h is the surface-to-surface distance between
the two drops. When the approach of the two drops is ac-
companied by the formation and expansion of a film in the
contact zone (Fig. 7), then one can characterize the interac-
tion by W(h), which is obtained by averaging W(R, h) over
all configurations with various R at fixed h (see Ref. 143).

The shape of W(h), or Π(h), qualitatively resembles that
of η(h) (see Fig. 6). In particular, if only electrostatic and
van der Waals interactions are operative, the shape of the
dependence W = W(h) resembles Fig. 6a, where an electro-
static barrier is present. The coagulation is called fast or
slow, depending on whether that electrostatic barrier is less
than kT or higher than kT. In addition, the flocculation is
termed reversible or irreversible, depending on whether the
depth of the primary minimum (that on the left from the
barrier in Fig. 6a) is comparable with kT or much greater
than kT. The driving forces of coagulation can be the fol-
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The effect of surface viscosity, ηS, is neglected when deriv-
ing Eqs (91)-(93). Based on the hydrodynamic equations
one can estimate that this effect is really negligible when
(2)

where η represents the bulk viscosity, which is assumed to
be of the same order of magnitude for the liquids inside and
outside the drops. If for a certain system, or under certain
conditions, the criterion, Eq. (94), is not satisfied, one can
expect that the surface viscosity will suppress the interfacial
mobility for both Systems I and II. The difference between
Rates I and II will be then determined mostly by thermody-
namic factors, such as the surface force Fs.

Although Eqs (89) and (91) lead us to some more gen-
eral conclusions than the original Bancroft rule (e.g., the
possibility for inversion of the emulsion stability owing to
disjoining pressure effects), we neither claim that the Ban-
croft rule, or its extension based on Eqs. (89) and (91), have
general validity, nor that we have given a general explana-
tion of the emulsion stability. The coagulation in emulsions
is such a complex phenomenon, influenced by too many
different factors, that according to us any attempt at formu-
lating a general explanation (or criterion) is hopeless. Our
treatment is theoretical and as every theory, it has limita-
tions inherent to the model used and therefore is valid only
under specific conditions. It should not be applied to a sys-
tem where these conditions are not fulfilled. The main as-
sumptions and limitations of the model are (2): the
fluctuation-wave mechanism for coalescence is assumed to
be operative (see Fig. 10); the surfactant transfer on to the
surface is under diffusion or electro-diffusion control; pa-
rameter b defined by Eq. (55) does not account for the
demicellization kinetics for c1 > cmc; and the effect of sur-
face viscosity is not taken into account in Eqs (89) and (91).
Only small perturbations in the surfactant distribution,
which are due to the flow, have been considered; however,
under strongly nonequilibrium conditions (like turbulent
flows) we could find that new effects come into play, which
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lowing:

1. The body forces, such as gravity and centrifugation,
cause rising or sedimentation of the droplets, depend-
ing on whether their mass density is smaller or greater
than that of the continuous phase. Since drops of dif-
ferent size move with different velocities, they are
subjected to frequent collisions, leading to drop ag-
gregation or coalescence, called orthokinetic coagula-
tion.

2. The Brownian stochastic force dominates the gravi-
tational body force for droplets, which are smaller
than 1 µm. Thus, the Brownian collision of two
droplets becomes a prerequisite for their flocculation
and/or coalescence, which is termed perikinetic coag-
ulation.

3. The heating of an emulsion produces temperature
gradients, which in their own turn cause thermocap-
illary migration of the droplets driven by thermally
excited gradients of surface tension (170—172):

floes of size k which are products of other processes, differ-
ent from the flocculation itself [say, the reverse process of
floc disassembly, or the droplet coalescence, see Eqs (116)
and (120)]. Analogously to flocculation, the coalescence in
emulsions can be considered as a kind of irreversible coag-
ulation (176—179).

In the special case of irreversible coagulation one has
qk=0. The first term on the right-hand side of Eq. (96) is
the rate of formation of k floes by merging of two smaller
floes, whereas the second term expresses the rate of disap-
pearance of k flocs due to their incorporation into larger
flocs. The total concentration of flocs (as kinetically inde-
pendent units), n, and the total concentration of the con-
stituent drops (including those in flocculated form), ntot,
are given by the expressions:
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Here, ds is the surface gradient operator and ET is the
coefficient of interfacial thermal elasticity, [cf. Eq. (1)]. The
drops moving with different thermocapillary velocities can
collide and flocculate or coalesce; this is the thermal coag-
ulation.

B. Kinetics of Irreversible Coagulation

1. Basic Equations

The kinetic theory of the fast irreversible coagulation was
first developed by Smoluchowski (173, 174) and later ex-
tended to the case of slow and reversible coagulation. In
any case of coagulation the general set of kinetic equations
reads (175):

where t is time, n1 denotes the number of single drops per
unit volume, nk is the number of floes of k drops (k = 2,
3,…,) per unit volume, and ai,jf (i, j = 1, 2, 3,…,) are rate
constants of flocculation (see Fig. 19); qk denotes a flux of

Figure 19 Examples for elementary acts of flocculation according
to the Smoluchowski scheme; ai,jf(i, j = 1, 2, 3,…,) denote the re-
spective rate constants of flocculation.

The rate constants in Eq. (96) can be expressed in the form:

where D(0)i,j is the relative diffusion coefficients for two
flocs of radii Ri and Rj, and aggregation number i and j,
respectively; and Ei,j is the collision efficiency (180, 181).
Below we give expressions for D(0)i,j and Ei,j applicable
to the various types of coagulation.

The Einstein approach to the theory of diffusivity D
gives the following expression:
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where B is the friction coefficient, and V is the velocity ac-
quired by a given particle under the action of an applied net
force F. For a solid sphere of radius R0 one has B = 6πηR0.
For a liquid drop, B is given by the equation of Rybczynski
(182) and Hadamar (183):

where the thermal conductivity of the continuous and dis-
perse phases are denoted by µ, and µd; the interfacial ther-
mal elasticity ET is defined by Eq. (95).

The collision efficiency Ei,j in Eq. (98) accounts for the
interactions (of both hydrodynamic and intermolecular ori-
gin) between two colliding drops. The inverse of ET is
called the stability ratio or the Fuchs factor (186) and can
be expressed in the following general form (3, 180):
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where ηd is the viscosity inside the drop, and η is the vis-
cosity of the continuous phase. The combination of Eqs
(99) and (100) yields the following expression for the rel-
ative diffusivity of two isolated Brownian droplets of radii
Ri and Rj.

The limiting case ηd → 0 corresponds to two bubbles,
whereas in the other limit, ηd → ∞, Eq. (101) describes two
solid particles or two liquid drops of tangentially immobile
surfaces.

When the relative motion of the drop is driven by a body
force or by thermocapillary migration (rather than by self-
diffusion), Eq. (101) is no longer valid. Instead, in Eq. (98)
one has formally to substitute the following expression for
D(0)i,j, see Rogers and Davis (184):

Here, vj denotes the velocity of a floc of aggregation
number j. Physically, Eq. (102) accounts for the fact that
the drops/flocs of different size move with different veloc-
ities under the action of the body force. In the case of grav-
ity-driven flocculation vj, is the velocity of a
rising/sedimenting particle, which for a drop of tangentially
immobile surface is given by the Stokes formula:

see, e.g., Ref. 16; here, g is the acceleration due to gravity,
and ∆ρ is the density difference between the two liquid
phases.

In the case of thermal coagulation, the drop velocity vj
is given by the expression (185):

As usual, h is the closest surface-to-surface distance be-
tween the two drops; a is defined by Eq. (46); WT(s) is the
energy of non hydrodynamic interactions between the
drops, see Eq. (67); β(s) accounts for the hydrodynamic in-
teractions; and B(s) is the drop friction coefficient. For s →
∞ one obtains β → 1, since for large separations the drops
obey the Rybczynski - Hadamar equation (100). In the op-
posite limit, s ` 1, i.e., close approach of the two drops,
B(s) = F/V can be calculated from either Eq. (47), (49),
(52), or (56), depending on the specific case. In particular,
for s` 1 one has β ? s-1/2 for two spherical droplets of tan-
gentially mobile surfaces, whereas β ? 1/s for two drops
of tangentially immobile surfaces (or two solid particles). In
the latter case the integral in Eq. (105) seems to be diver-
gent. To overcome this problem it is usually accepted that
for the smallest separations Wi,j is dominated by the van
der Waals attraction, i.e., Wi,j → -∞ for s → 0, and conse-
quently, the integrand in Eq. (105) tends to zero for s → 0.

The Fuchs factor Φi,j is determined mainly by the values
of the integrand in the vicinity of the electrostatic maximum
(barrier) of Wi,j (cf. Fig. 6a) since Wi,j enters Eq. (105) as
an exponent. By using the method of the saddle point, Der-
jaguin (3) estimated the integral in Eq. (105):

Here, Sm denotes the value of s corresponding to the max-
imum. One sees that the higher the barrier, Wi,j(Sm), the
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smaller the collision efficiency, Ei,j, and the slower the co-
agulation.

The infinite set of Smoluchowski equations [Eq. (96)]
was solved by Bak and Heilmann (187) in the particular
case when the floes cannot grow larger than a given size; an
explicit analytical solution was obtained by these authors.

2. Special Results

For imaginary drops, which experience neither longrange
surface forces (Wi,j = 0) nor hydrodynamic interactions (β
= 1), Eq. (105) yields a collision efficiency Ei,j = 1, and
Eq. (98) reduces to the Smoluchowski (173, 174) expres-
sion for the rate constant of fast irreversible coagulation.
In this particular case, Eq. (96) represents an infinite set of
nonlinear differential equations. If all flocculation rate con-
stants are the same and equal to af, the problem has an exact
analytical solution (173, 174):

where tbf is the characteristic time in this case, and vbf is
an average velocity of floc motion, which can be expressed
by means of Eq. (103) if the body force is the gravitational
one.

If the orthokinetic coagulation is driven by thermocap-
illary migration, the counterpart of Eq. (111) reads (181):
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The total average concentration of the drops (in both singlet
and flocculated form), ntot, does not change and is equal to
the initial number of drops, n0. Unlike ntot, the concentra-
tion of the floes, n, decreases with time, while their size in-
creases. Differentiating Eq. (108) one obtains:

where is the average volume per floc, and ø0 is the initial
volume fraction of the constituent drops. Combining Eqs
(98) and (109) one obtains the following result for periki-
netic (Brownian) coagulation:

where V0 = 4πR0
3/3 is the volume of a constituent drop of

radius R0, tBr is the characteristic time of the coagulation
process in this case, E0 is an average collision efficiency,
and D0 is an average diffusion coefficient. Equation (110)
shows that for fast irreversible coagulation, increases lin-
early with time.

In contrast, is not a linear function of time for
orthokinetic coagulation, except in the limit of short times.
When the flocculation is driven by a body force, i.e., in case
of sedimentation or centrifugation, one obtains (181):

where vtm is an average velocity of thermocapillary migra-
tion, see Eq. (104), and ttm is the respective characteristic
time. Note that D0 ? R0

-1, vbf ? R0
2, and vtm ? R0, cf. Eqs

(99) and (104). From Eqs (110)-(112) it then follows that
the three different characteristic times exhibit different de-
pendencies on drop radius: tBr ? R0

3, tbf ? R0
-1, while ttm

is independent of R0. Hence, the Brownian coagulation is
faster for the smaller drops, and the body force-induced co-
agulation is more rapid for the larger drops, whereas the
thermo-capillary-driven coagulation is not sensitive to the
drop size.

Using the Stokes-Einstein expression for the diffusivity
D0 and Eq. (110) one obtains:

On the other hand, the combination of Eqs (103) and (111)
yields:

Let us consider the quantity:

For R0 < Rcr, Eq. (115) yields χ(R0) ≈ 1, i.e., tbr` tbf, and
the Brownian flocculation is much faster than the orthoki-
netic flocculation. In contrast, for R0 > Rcr, Eq. (115) yields
χ(R0) ≈ 0, i.e., tbf` tBr, and the orthokinetic flocculation
is much more rapid than the Brownian flocculation. At R0
= Rcr, a sharp transition from Brownian to orthokinetic
flocculation takes place; Rcr corresponds to the inflection
point of the dependence χ = χ(R0). Since the orthokinetic
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flocculation happens through a directional motion of the
particles, then Rcr can be considered as a threshold radius
of the flocs needed for the creaming (or sedimentation) to
begin. With ∆ρ = 0.1 g/cm3 and T = 298 K from Eq. (115)
one calculates Rcr = 1.05 µm. It turns out that the threshold
size for creaming is around 1 µm. This conclusion is con-
sistent with the experimental data in Fig. 3, which show
that emulsions with 2R0 = 5 µm do cream, whereas those
with 2R0 = 0.35 µm do not.

C. Kinetics of Reversible Flocculation

If the depth of the primary minimum (that on the left
from the maximum in Fig. 6a) is not so great, i.e., the
attractive force which keeps the drops together is
weaker, then the floes formed are labile and can dis-
assemble into smaller aggregates. This is the case of
reversible flocculation (3). For example, a floc com-
posed of i+j drops can be split into two flocs containing i
and j drops. We denote the rate constant of this reverse
process by ai,jr (see Fig. 20a). In the present case both the
straight process of flocculation (Fig. 19) and the reverse
process (Fig. 20a) take simultaneously place. The kinetics
of aggregation in this more general and complex case is de-
scribed by the Smoluchowski set of equations, Eq. (96),
where one is to substitute:

Here, qk is the rate of formation of k flocs in the process of
disassembly of larger flocs minus the rate of decay of the k
flocs. As before, the total number of constituent drops, ntot,
does not change. However, the total number of the flocs, n,
can either increase or decrease depending on whether the
straight or the reverse process prevails. Summing up all
equations in Eq. (96) and using Eq. (116) one derives the
following equation for n:
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Figure 20 (a) elementary act of splitting of a floc, containing i +
j constitutive drops, into two smaller flocs containing, respec-
tively, i and j constitutive drops; (b) coalescence transforms a floc
composed of k drops into a floc containing i drops (i < k). The
rate constants of the respective processes are ai,jr and ak,ic (i, j, k
= 1, 2, 3,…,).

A general expression for the rate constants of the reverse
process was obtained by Martinov and Muller (188):

Here, Zi,j is the so-called irreversible factor, which is de-
fined as follows:

The integration in Eq. (119) is carried out over the region
around the primary minimum, where Wi,j takes negative
values (cf. Fig. 6a). In other words, Zi,j is determined by the
values of Wi,j in the region of the primary minimum,
whereas Ei,j is determined by the values of Wi,j in the re-
gion of the electrostatic maximum, cf. Eqs (107) and (119).
When the minimum is deeper, Zi,j is larger and the rate con-
stant in Eq. (118) is smaller. Moreover, Eqs (107) and (118)
show that the increase in the height of the barrier also de-
creases the rate of the reverse process. The physical inter-
pretation of this fact is the following: to detach a drop from
a floc, the drop has to first emerge from the well and then
to “jump” over the barrier (cf. Fig. 6a).

As an illustration, in Fig. 21 we show theoretical curves
for the rate of flocculation calculated in Ref. 62. The curves
are computed by solving numerically the set of Eqs (96),
(116), and (117). To simplify the problem the following as-
sumptions have been used (62): (1) the Smoluchowski as-
sumption that all rate constants of the straight process are
equal to af, (2) flocs containing more than M drops cannot
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decay; (3) all rate constants of the reverse process are equal
to ar; and (4) at the initial moment only single constituent
drops of concentration n0 are available. In Fig. 21 we pres-
ent the calculated curves for n0/n versus the dimensionless
time, τ = afn0t/2, for a fixed value M = 4 and various values
of the ratio of the rate constants of the straight and the re-
verse process, u = 2ar/(n0af). Note that n is defined by Eq.
(97). The increase in n0/n with time means that the concen-
tration n of the flocs decreases; i.e., the emulsion contains
a smaller number of flocs, but their size is larger. Conse-
quently, a larger n0/n corresponds to a larger degree of floc-
culation. It is seen that for the short times of flocculation (τ
→ 0) all curves in Fig. 21 touch the Smoluchowski distri-
bution (corresponding to u = 0), but for the longer times
one observes a reduction in the degree of flocculation,
which is smaller for the curves with larger values of u
(larger rate constants of the reverse process). The “S-
shaped” curves in Fig. 21 are typical for the case of re-
versible flocculation; curves of similar shape have been
obtained experimentally (3, 168, 189).

D. Kinetics of Simultaneous Flocculation
and Coalescence

In the case of pure flocculation considered above the total
number of constituent drops, ntot, does not change, see Eq.
(97). In contrast, if coalescence is present, in addition to
the flocculation, then ntot decreases with time (6). Hartland
and Gakis (190) and Hartland and Vohra (191) developed
a model of coalescence, which relates the lifetime of single
films to the rate of phase separation in emulsions of com-

paratively large drops (> 1 mm) in the absence of surfac-
tant. The effect of surfactant (emulsifier) was taken into ac-
count by Lobo et al. (192), who quantified the process of
coalescence within an already creamed or settled emulsion
containing drops of size less than 100 µm. Danov et al.
(175) generalized the Smoluchowski scheme of floccula-
tion to account for the fact that the droplets within the flocs
can coalesce to give larger droplets, as illustrated in Fig.
20b. In this case, on the right-hand side of Eq. (96) one has
to substitute (175):
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Figure 21 Plot of the inverse dimensionless concentration of flocs, n0/n, vs. the dimensionless time, τ = afn0t/2, for M = 4 and various
values of the dimensionless ratio u = 2ar/(n0af); ar and af are the rate constants for the reverse and straight processes. Theoretical curves
for reversible flocculation from Ref. 62.

where ak,ic is the rate constant of transformation (by coales-
cence) of a floc containing k droplets into a floc containing
i droplets (see Fig. 20b). The resulting floc is further in-
volved in the flocculation scheme, which thus describes the
interdependence of flocculation and coalescence. In this
scheme the total coalescence rate, aic,tot, and the total num-
ber of droplets, ntot, are related as follows (175):
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To determine the rate constants of coalescence, ak,ic,
Danov et al. (147) examined the effects of the droplet
interactions and the Brownian motion on the coales-
cence rate in dilute emulsions of micrometer- and sub-
micrometer-sized droplets. The processes of film
formation, thinning, and rupture were included as con-
secutive stages in the scheme of coalescence.
Expressions for the interaction energy due to various
DLVO and nonDLVO surface forces between two
deformed droplets were obtained (143).

Average models for the total number of droplets
have also been proposed (193, 194). The average
model of van den Tempel (193) assumes a linear struc-
ture for the flocs. The coalescence rate is supposed to
be proportional to the number of contacts within a
floc. To simplify the problem van den Tempel used
several assumptions, one of them being that the con-
centration of the single droplets, n1, obeys the
Smoluchowski distribution, Eq. (108), for k=1. The
model of Borwankar et al. (194) employs some
assumptions, which make it more applicable to cases in
which the flocculation (rather than the coalescence)
is slow and is the rate-determining stage. This is
illustrated by the curves shown in Fig. 22, which are
calculated for the same rate of coalescence, but for two
different rates of flocculation. For relatively high rates
of flocculation (Fig. 22a) the predictions of the three
theories differ, but the model of Borwankar et al.
(194) gives values closer to that of the more detailed
model by Danov et al. (175). For very low values of
the flocculation rate constant, af, for which the coalescence
is not the rate-determining stage, all three theoretical mod-
els (175, 193, 194) give results for ntot/n0 versus time,
which almost coincide numerically (Fig. 22b).

Finally, it is worthwhile noting that the simultaneous
flocculation and coalescence in emulsions could be also ac-
companied with adsorption of amphiphilic molecules on
the drop surfaces (195); this possibility should be kept in
mind when interpreting experimental data.

VII. SUMMARY

Surfactants play a crucial role in emulsification and emul-
sion stability. A first step in any quantitative study on emul-
sions should be to determine the equilibrium and dynamic
properties of the oil-water interface, such as interfacial ten-
sion, Gibbs elasticity, surfactant adsorption, counterion
binding, surface electric potential, adsorption relaxation
time, etc. Useful theoretical concepts and expressions,
which are applicable to ionic, nonionic, and micellar surfac-

tant solutions, are summarized in Sec. II.
The emulsion drops in floes and creams are separated

with thin liquid films, whose rupture leads to coalescence
and phase separation. At equilibrium the area of the films
and their contact angle are determined by the surface forces
(disjoining pressure) acting across the films (Sec. III.A.1).
Several ways of breakage of these emulsion films have
been established: capillary-wave mechanism, pore-nucle-
ation mechanism, solute-transport mechanism, barrier
mechanism, etc. (Sec. III.A.2).

Experimental and theoretical results show evidence that
the capillary-wave mechanism is the most frequent reason
for the coalescence of both deformed and spherical
emulsion drops. For a certain critical thickness (width), hc,
of the film (gap) between two emulsion drops the
amplitude of the thermally excited fluctuation capillary
waves begins to grow, promoted by the surface forces, and
causes film rupture. The capillary waves can bring about
coalescence of two spherical emulsion drops, when the dis-
tance between them becomes smaller than a certain critical
value, which is estimated to be about 10—50 nm (see Sec.
III.C).

The interactions of two emulsion drops, and their theo-
retical description, become more complicated if the drops
are moving against each other, instead of being quiescent.
In such a case, which happens most frequently in practice,
the hydrodynamic interactions come into play (Sec. IV).
The velocity of approach of two drops and the critical
distance (thickness) of drop coalescence are influenced by
the drop size, disjoining pressure, bulk and surface
diffusivity of surfactant, Gibbs elasticity, surface viscosity,
etc. If attractive (negative) disjoining pressure
prevails, then “pimples” appear on the opposite drop
surfaces in the zone of contact; thus, the drop coales-
cence can be produced by the growth and merging of these
“pimples” (Sec. IV.A.3). Alternatively, drop coalescence
can be produced by the growth of fluctuation capillary
waves; the theory of the respective critical thickness is
found to agree excellently with available experimental data
(Sec. IV.B.3).

The finding that the hydrodynamic velocity of mutual
approach of two emulsion drops is much higher when the
surfactant is dissolved in the drop phase (rather than in the
continuous phase) provides a natural explanation of the
Bancroft rule in emulsification (Sec. V). A generalized ver-
sion of the Bancroft rule is proposed, Eqs (89) and (91),
which takes into account the role of various thermodynamic
and hydrodynamic factors. For example, the existence of a
considerable repulsive (positive) disjoining pressure may
lead to exclusions from the conventional Bancroft rule,
which are accounted for in its generalized version.
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Knowledge concerning the individual acts of drop-drop
collision is a prerequisite for development of a kinetic the-
ory of such collective phenomena as flocculation/coales-
cence and phase separation. The cases of fast and slow,
perikinetic and orthokinetic, and irreversible and reversible

flocculation are considered in Sec. VI. Special attention is
paid to the case of parallel flocculation and coalescence.
Much work remains to be done in order to build up united
theory including both individual drop interactions and col-
lective phenomena in emulsions.

655Dynamics Surfactant-stabilized Emulsions

Figure 22 The total number of constituent drops in a flocculating emulsion, ntot, decreases with time, t, because of a parallel process of
coalescence. The curves are calcualted for the following parameter values: initial number of constituent drops n0 = 1012cm-3; coalescence
rate constant k2,1c = 10-3 s-1. Curve 1 is a numberical solution to Eq. (121); Curves 2 and 3 are the results predicted by the models of Bor-
wankar et al. (194) and van den Tempel (193), respectively. The values of the flocculation rate constant are: (a) af = 10-11 cm3/s; (b) af =
10-16 cm3/s.
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